• Title/Summary/Keyword: C-SM

Search Result 949, Processing Time 0.025 seconds

Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder (Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향)

  • Yun, Joon-Chul;Lee, Geon-Yong;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.

Fabrication of High-Quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ Thin Films by a Modified TFA-MOD Process (수정된 TFA-MOD법에 의한 $SmBa_{2}Cu_{3}O_{7-{\delta}}$ 박막의 제조)

  • Kim Duck-Jin;Song Kyu-Jeong;Moon Seung-Hyun;Park Chan;Yoo Sang-Im
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.77-82
    • /
    • 2005
  • We report a successful fabrication of high-quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ (SmBCO) thin films on $LaAlO_3$(LAO)(100) single crystalline substrates by a modified TFA-MOD method. After the pyrolysis heat treatment of spin-coated films up to $400^{\circ}C$, SmBCO films were fired at various temperatures ranging from 810 to $850^{\circ}C$ in a reduced oxygen atmosphere (10 ppm $O_2$ in Ar). Optimally processed SmBCO films exhibited the zero-resistance temperature ($T_{c,zero}$) of 90.2 K and the critical current density ($J_c$) of $0.8\;MA/cm^2$ at 77K in self-field. Compared with the $J_c$ values (normally, > $2\;MA/cm^2$ at 77 K) of MOD-TFA processed YBCO films, rather depressed $J_c$ values in SmBCO films are most probably attributed to the existence of ${\alpha}$-axis oriented grains.

  • PDF

A Chromosomal Study on the Genus Cobitis (Pisces : Cobitidae) in the Southern Part of Korea (한국 남부지방에 서식하는 기름종개속(Cobitis) 어류의 핵형 비교)

  • KIM Ik-Soo;LEE Ji-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 1986
  • The Chromosomes of five cobitid fishes, Cobitis taenia taenia, C. taenia lutheri, C. taenia striata, C. longicorpus and C. koreensis were studied. The karyotypic studies were based on the observations from the flame-drying preparations. The results obtained such as the number of somatic chromosomes, the type of chromosomes according to the centromeric loci and the number of chromosomal arm(AN) were as follows: C. longicorpus, 2n=50, 12m-8sm-30a, AN=70; C. koreensis, 2n=50, 10m-12sm-28a, AN=72; C. taenia taenia, 2n=48, 14m-4sm-30a, AN=66: C. taenia lutheri, 2n=50, 10m-6sm-34a, AN=66; and C. taenia striata, 2n=50, 10m-6sm-34a, AN=66. Peculiarly, in the case of C. taenia lutheri the chromosome number of somatic diploid was found to be 48-51, however, the number of chromosomal arm was 66, irrespective of the difference in the numbers of each somatic genome. It was confirmed there exists the Robertsonian event, one of the chromosomal polymorphism in C.t. lutheri. It was remarked taxonomically that the karyotype of C. taenia taenia of Korea having 48 diploid chromosomes was not identical with that of Europe and Japan with 50 chromosomes. Based on the karyotype analysis the Korean cobitid fishes can be classified roughly into three species groups according to arm numbers and diploid numbers; 1) C. taenia taenia, C. taenia lutheri, C. taenia striata 2) C. koreensis, C. longicor pus, C. rotundicaudata and 3) C. granoei.

  • PDF

Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating (AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.

Magnetic Hardening of Rapidly Solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ Compounds (급속냉각된 $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ 화합물에서 생성된 신 강자성상)

  • Choong-Jin Yang;E. B. Park;S. D. Choi
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.226-232
    • /
    • 1994
  • Rapidly solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ compound were found to crystallize in the ${Sm(Fe,\;M)}_{7}$ based stable magnetic phase by introducing a second transition element into the Sm-Fe binary system. The ${Sm(Fe,\;M)}_{7}$ phase exhibits the highest Curie temperatuer ($T_{c}=355^{\circ}C$) ever Known in the Sm-Fe magnetic systems with a quite high intrinsic coercivity($_{i}H_{c}=3~6\;kOe $). The ${Sm(Fe,\;M)}_{7}$ phase remains stable even after annealing if once form during the rapid solidification. The primary reason for the high coercive force is due to the fine grain size($2000~8000\;{\AA}$)of the magnetic ${Sm(Fe,\;M)}_{7}$ matrix phase, and the enhanced Curie temperature is attributed to the extended solid-solubility of the additive transition elements in Fe matrix, which leads to volume expansion of the ${Sm(Fe,\;M)}_{7}$ cell causing an enhanced coupling constant of Fe atoms.

  • PDF

Phase Relationships and Magnetic Properties of HDDR-treated $Sm_3$(Fe,Co,V)$_{29}$ Alloy

  • Kwon, Hae-Woong
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.122-125
    • /
    • 2001
  • Phase relationships of the HDDR (hydrogenation, disproportionation, desorption and recombination)-treated Sm$_3$(Fe,M)$_{29}$-type alloy with chemical composition of Sm$_{9}$Fe$_{65}$ $Co_{20}$V$_{6}$ were studied by X-ray diffraction (XRD) and by thermomagnetic analysis (TMA). The alloy was disproportionated into a mixture of $SmH_{x}$ and $\alpha$-Fe at high temperature under hydrogen gas. The disproportionated material was recombined into a mixture of Sm-(Fe,M) (M = Co and/or V) and $\alpha$-Fe phases. The structure of the Sm-(Fe,M) phase was dependent upon the recombination conditions, and a detailed phase diagram showing the phase relationships in the HDDR-treated alloy has been established. The Sm-(Fe,M) phase in material recombined above $900^{\circ}C$ had the $Sm_2Fe_{17}$-type structure, and it exhibited the $SmFe_{7}$-type structure when recombined at temperatures ranging from $700^{\circ}C$ to $850^{\circ}C$. Recombination below $650^{\circ}C$ led to the $SmFe_3$-type structure of the Sm-(Fe,M) phase. Curie temperatures of the Sm-(Fe,M) phases in the recombined material were significantly higher than those of the corresponding stoichiometric phases. It was suggested that the chemical composition of the Sm-(Fe,M) phases may be significantly different from that of the corresponding stoichiometric phases. All the HDDR-treated $Sm_{9}Fe_{65}Co_{20}V_{6}$ materials showed the soft magnetic features regardless of the phase constitution.n.

  • PDF

A Study on fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(I) (HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(1))

  • 서창민;서덕영;이동재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.918-928
    • /
    • 1995
  • This paper deals with the various mechanical properties and fatigue strength in the FRW1 (friction welded interface) of high speed steel (HSS-Co) to SM55C through the tensile test, hardness test and fatigue test. The data of FRW specimens are also compared with those of the base materials (HSS-Co and SM55C steel). Three kinds of specimens used in this study are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. It is confirmed that the applied welding conditions are optimum methods in order to minimize the heat affected zone (HAZ) and hardness distribution at the HAZ. The fatigue strengths at N = 10$^{6}$ cycles of smooth, circumferential notch and saw notch specimens in the FRW joints are about 299.2 MPa, 123.8 MPa and 247.5 MPA, respectively. The fatigue strength of the friction welded joints is almost equal to that of the SM55C carbon steel in the optimum welding conditions. The fatigue cracks initiated at the welded zone are propagated along the side of SM55C steel.

Effect of Upset pressure on weldability in the Friction Welding of SM45C-Solid and SM45C-Pipe which is used in the Piston-Rod (경량화 피스톤 로드에 사용되는 SM45C/SM45C-Pipe의 마찰용접시 업셋압력이 미치는 영향)

  • Min, Byung-Hoon;Choi, Won-Yong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.36-43
    • /
    • 2008
  • This research is tendencious to manufacture solid piston-rod of shock absorber as hollow piston-rod using friction welding. The SM45C has been welded to the SM45C-pipe in order to investigate the effect of upset pressure on friction weldability. The friction time and upset pressure was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. When the upset pressure is sufficient, gets the high tensile strength. The optimal welding conditions were n=2,000rpm, $P_1$=55MPa, $P_2$=95MPa, $t_1$=1.5sec, $t_2$=2.0sec when the total upset length is 4.5mm.

Thermal Properties of $Sm_{2}(MoO_{4})_{3}$ Single Crystal ($Sm_{2}(MoO_{4})_{3}$ 단결정의 열적특성)

  • Son, Jong-Yoon;Kim, Jae-Hyung;Kim, Joung-Bae;Lee, Kwang-Sei;Nam, Sang-Hee;Lee, Chan-Ku;Lee, Su-Dae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.94-97
    • /
    • 2002
  • Phase transitions of the $Sm_{2}(MoO_{4})_{3}$ single crystal were studied through thermal analysis, x-ray methods and SEM/EDS. $Sm_{2}(MoO_{4})_{3}$ undergoes the ferroelastic and ferroelectric phase transition at $198^{\circ}C$. With increasing temperature, the second phase transition occurs at $928^{\circ}C$. From TG analysis, the mass loss of $Sm_{2}(MoO_{4})_{3}$ exhibits an anomalous behavior at about $650^{\circ}C$ and the curves increased monotonically to $1132^{\circ}C$. SEM and EDS show that the escape of ${MoO_{4}^{2-}$ tetrahedra from the lattice of $Sm_{2}(MoO_{4})_{3}$ increase above $928^{\circ}C$, so $Sm_{2}(MoO_{4})_{3}$ has a very rough surface and internal cracks.

  • PDF