• Title/Summary/Keyword: C-Jun expression

Search Result 836, Processing Time 0.024 seconds

Insulin-Like Growth Factor-I Induces Androgen Receptor Activation in Differentiating C2C12 Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.189-194
    • /
    • 2009
  • The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0-250 ng/ml) of IGF-I or for various periods of time (0-60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal ${\alpha}-actin$ and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.

Approximation of most penetrating particle size for fibrous filters considering Cunningham slip correction factor

  • Jung, Chang Hoon;Yoon, Young Jun;Um, Junshik;Lee, Seoung Soo;Lee, Ji Yi;Chiao, Sen;Kim, Yong Pyo
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.439-445
    • /
    • 2020
  • In the estimation of the aerosol single fiber efficiency using fibrous filters, there is a size range, where the particles penetrate most effectively through the fibrous collectors, and corresponding minimum single fiber efficiency. For small particles in which the diffusion mechanism is dominant, the Cunningham slip correction factor (Cc) affects the single fiber efficiency and the most penetrating particle size (MPPS). Therefore, for accurate estimation, Cc is essential to be considered. However, many previous studies have neglected this factor because of its complexity and the associated difficulty in deriving the appropriate parameterization particularly for the MPPS. In this study, the expression for the MPPS, and the corresponding expression for the minimum single fiber efficiency are analytically derived, and the effects of Cc are determined. In order to accommodate the slip factor for all particle-size ranges, Cc is simplified and modified. Overall, the obtained analytical expression for the MPPS is in a good agreement with the exact solution.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Identification of GATA2 and AP-1 Activator Elements within the Enhancer VNTR Occurring in Intron 5 of the Human SIRT3 Gene

  • Bellizzi, Dina;Covello, Giuseppina;Di Cianni, Fausta;Tong, Qiang;De Benedictis, Giovanna
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study were: 1) to verify if GATA and AP-1 sites could bind GATA2 and c-Jun/c-Fos factors, respectively; 2) to investigate whether such sites modulate the enhancer activity of the SIRT3-VNTR alleles. DAPA assay proved that GATA2 and c-Jun/c-Fos factors are able to bind the corresponding sites. Moreover, co-transfection experiments showed that the over-expression of GATA2 and c-Jun/c-Fos factors boosts the VNTR enhancer activity in an allelic-specific way. Furthermore, we established that GATA2 and c-Jun/c-Fos act additively in modulating the SIRT3-VNTR enhancer function. Therefore, GATA2 and AP-1 are functional sites and the T > C transition of the second VNTR repeat affects their activity.

HCBP6 upregulates human SREBP1c expression by binding to C/EBPβ-binding site in the SREBP1c promoter

  • Yang, Xueliang;Han, Ming;Liu, Shunai;Yuan, Xiaoxue;Liu, Xiaojing;Feng, Shenghu;Zhou, Li;Li, Yaru;Lu, Hongping;Cheng, Jun;Lin, Shumei
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • Sterol regulatory element-binding protein-1c (SREBP1c) plays an important role in triglyceride (TG) homeostasis. Although our previous study showed that hepatitis C virus core-binding protein 6 (HCBP6) regulates SREBP1c expression to maintain intracellular TG homeostasis, the mechanism underlying this regulation is unclear. In the present study, we found that HCBP6 increased intracellular TG levels by upregulating SREBP1c expression. HCBP6 increased SREBP1c transcription by directly binding to the SREBP1c promoter (at the -139- to +359-bp region). Moreover, we observed that HCBP6 interacted with $C/EBP{\beta}-binding$ site in the SREBP1c promoter both in vitro and in vivo. These results indicate that HCBP6 upregulates human SREBP1c expression by binding to the $C/EBP{\beta}-binding$ site in the SREBP1c promoter.

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway

  • Lee, Jun Hee;Yun, Chul Won;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.313-321
    • /
    • 2018
  • Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein ($PrP^C$) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, $PrP^C$ expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, $PrP^C$ increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, $PrP^C$ inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of $PrP^C$ triggered apoptosis via the activation of caspase-3. These results indicate that $PrP^C$ plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with $PrP^C$ targeting may yield efficacious treatments of colorectal cancer.

Clinical Significance of the Expression of p53, p21, EGFR and c-erbB-2 in Squamous Cell Carcinoma of the Head and Neck (두경부 편평세포암종에서 p53, p21, EGFR 및 c-erbB-2 발현의 임상적 의의)

  • Lee Jun-Han;Do Nam-Yong;Park Sung-Yong;Kim Gun-Hyung;Cho Sung-Il
    • Korean Journal of Head & Neck Oncology
    • /
    • v.21 no.2
    • /
    • pp.139-145
    • /
    • 2005
  • Background and Objectives: Because of squamous cell carcinoma of the head and neck undergoes a generally poor hospital course, the prognostic significance of the squamous cell carcinomas in head and neck have been evaluated to identify those features associated with aggressive biologic behavior according to the immunologic and histopathologic characteristics. Materials and Method: To assess the significance of EGFR, c-erbB-2, p21 and p53 protein in head and neck tumors and their correlation with prognostic factors, samples from 74 patients with squamous cell carcinomas of larynx, pharynx, and oral cavity were studied immunohistochemically. Results: EGFR, c-erbB-2, p21, and p53 protein were expressed 94.6%, 24.3%, 85.1%, and 55.4% in 74 cases of head and neck squamous cell carcinoma, respectively. The positive expression of EGFR was associated significantly with clinical stage and the negative expressions of p21 was associated significantly with histopathologic differentiation. There were no significant relationships between the reactivity of EGFR, c-erbB-2, p21, and p53 protein. Conclusion: The expression of EGFR, c-erbB-2, p21 and p53 protein could be related to oncogenesis, and the expression of p21 and EGFR protein can be used as a prognosticator in head and neck squamous cell carcinoma under certain limitations, but c-erbB-2 and p53 protein expression alone is not enough for evaluating prognosis of the carcinoma.

p38-dependent c-Jun degradation contributes to reduced PGE2 production in sodium orthovanadate-treated macrophages

  • Aziz, Nur;Kim, Eunji;Yang, Yanyan;Kim, Han Gyung;Yu, Tao;Cho, Jae Youl
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.389-394
    • /
    • 2022
  • In particular, the phenomenon of c-Jun degradation within the inflammatory response has not yet been fully analyzed. In order to verify this, we investigated LPS-stimulated murine macrophages pre-treated with sodium orthovanadate (SO) in order to uncover the regulatory mechanisms of the MAPKs which regulate c-Jun degradation within the inflammatory response. Through our study, we found that SO suppressed the production of prostaglandin E2 (PGE2) and the expression of COX-2 in LPS-stimulated RAW264.7 cells. Additionally, SO decreased total c-Jun levels, without altering the amount of mRNA, although the phospho-levels of p38, ERK, and JNK were strongly enhanced. Through the usage of selective MAPK inhibitors, and knockdown and overexpression strategies, p38 was revealed to be a major MAPK which regulates c-Jun degradation. Further analysis indicates that the phosphorylation of p38 is a determinant for c-Jun degradation, and is sufficient to induce ubiquitination-dependent c-Jun degradation, recovered through MG132 treatment. Therefore, our results suggest that the hyperphosphorylation of p38 by SO contributes to c-Jun degradation, which is linked to the suppression of PGE2 secretion in inflammatory responses; and thus, finding drugs to increase p38 activity could be a novel strategy for the development of anti-inflammatory drugs.