Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.033

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway  

Lee, Jun Hee (Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine)
Yun, Chul Won (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Lee, Sang Hun (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Publication Information
Biomolecules & Therapeutics / v.26, no.3, 2018 , pp. 313-321 More about this Journal
Abstract
Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein ($PrP^C$) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, $PrP^C$ expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, $PrP^C$ increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, $PrP^C$ inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of $PrP^C$ triggered apoptosis via the activation of caspase-3. These results indicate that $PrP^C$ plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with $PrP^C$ targeting may yield efficacious treatments of colorectal cancer.
Keywords
Colorectal cancer; Prion protein; Drug resistance; 5-fluorouracil; Anticancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liang, J., Ge, F., Guo, C., Luo, G., Wang, X., Han, G., Zhang, D., Wang, J., Li, K., Pan, Y., Yao, L., Yin, Z., Guo, X., Wu, K., Ding, J. and Fan, D. (2009) Inhibition of PI3K/Akt partially leads to the inhibition of $PrP^C$-induced drug resistance in gastric cancer cells. FEBS J. 276, 685-694.   DOI
2 Liang, J. and Kong, Q. (2012) ${\alpha}$-Cleavage of cellular prion protein. Prion 6, 453-460.   DOI
3 Liang, J., Pan, Y., Zhang, D., Guo, C., Shi, Y., Wang, J., Chen, Y., Wang, X., Liu, J., Guo, X., Chen, Z., Qiao, T. and Fan, D. (2007) Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J. 21, 2247-2256.   DOI
4 Liu, L. Z., Zhou, X. D., Qian, G., Shi, X., Fang, J. and Jiang, B. H. (2007) AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/ p70S6K1 pathway. Cancer Res. 67, 6325-6332.   DOI
5 Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338.   DOI
6 Luo, J., Manning, B. D. and Cantley, L. C. (2003) Targeting the PI3KAkt pathway in human cancer: rationale and promise. Cancer Cell 4, 257-262.   DOI
7 Malaga-Trillo, E., Solis, G. P., Schrock, Y., Geiss, C., Luncz, L., Thomanetz, V. and Stuermer, C. A. (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55.
8 Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.   DOI
9 Martin-Lanneree, S., Hirsch, T. Z., Hernandez-Rapp, J., Halliez, S., Vilotte, J. L., Launay, J. M. and Mouillet-Richard, S. (2014) PrPC from stem cells to cancer. Front Cell Dev Biol 2, 55.
10 Tsukuda, M., Ishitoya, J., Matsuda, H., Horiuchi, C., Taguchi, T., Takahashi, M., Nishimura, G., Kawakami, M., Watanabe, M., Niho, T., Kawano, T., Ikeda, Y., Sakuma, Y., Shiono, O. and Komatsu, M. (2010) Randomized controlled phase II comparison study of concurrent chemoradiotherapy with docetaxel, cisplatin, and 5-fluorouracil versus CCRT with cisplatin, 5-fluorouracil, methotrexate and leucovorin in patients with locally advanced squamous cell carcinoma of the head and neck. Cancer Chemother. Pharmacol. 66, 729-736.   DOI
11 Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329-341.
12 Vassallo, N., Herms, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O. and Kretzschmar, H. A. (2005) Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun. 332, 75-82.   DOI
13 Wang, J. H., Du, J. P., Zhang, Y. H., Zhao, X. J., Fan, R. Y., Wang, Z. H., Wu, Z. T. and Han, Y. (2011) Dynamic changes and surveillance function of prion protein expression in gastric cancer drug resistance. World J. Gastroenterol. 17, 3986-3993.   DOI
14 Yuan, T. L. and Cantley, L. C. (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497-5510.   DOI
15 Adelstein, D. J., Saxton, J. P., Rybicki, L. A., Esclamado, R. M., Wood, B. G., Strome, M., Lavertu, P., Lorenz, R. R. and Carroll, M. A. (2006) Multiagent concurrent chemoradiotherapy for locoregionally advanced squamous cell head and neck cancer: mature results from a single institution. J. Clin. Oncol. 24, 1064-1071.   DOI
16 Alvarez, P., Marchal, J. A., Boulaiz, H., Carrillo, E., Velez, C., Rodriguez- Serrano, F., Melguizo, C., Prados, J., Madeddu, R. and Aranega, A. (2012) 5-Fluorouracil derivatives: a patent review. Expert Opin. Ther. Pat. 22, 107-123.   DOI
17 Wang, Q., Qian, J., Wang, F. and Ma, Z. (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol. Rep. 28, 2029-2034.   DOI
18 Weise, J., Sandau, R., Schwarting, S., Crome, O., Wrede, A., Schulz- Schaeffer, W., Zerr, I. and Bahr, M. (2006) Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37, 1296-1300.   DOI
19 Yang, X., Zhang, Y., Zhang, L., He, T., Zhang, J. and Li, C. (2014) Prion protein and cancers. Acta Biochim. Biophys. Sin. (Shanghai) 46, 431-440.   DOI
20 Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. and Kretzschmar, H. A. (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104-112.   DOI
21 Cheng, Y., Tao, L., Xu, J., Li, Q., Yu, J., Jin, Y., Chen, Q., Xu, Z., Zou, Q. and Liu, X. (2014) CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol. Carcinog. 53, 686-697.   DOI
22 Du, L., Rao, G., Wang, H., Li, B., Tian, W., Cui, J., He, L., Laffin, B., Tian, X., Hao, C., Liu, H., Sun, X., Zhu, Y., Tang, D. G., Mehrpour, M., Lu, Y. and Chen, Q. (2013) CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 73, 2682-2694.   DOI
23 Hammond, W. A., Swaika, A. and Mody, K. (2016) Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol. 8, 57-84.   DOI
24 Holohan, C., Van Schaeybroeck, S., Longley, D. B. and Johnston, P. G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714-726.   DOI
25 Li, Q. Q., Sun, Y. P., Ruan, C. P., Xu, X. Y., Ge, J. H., He, J., Xu, Z. D., Wang, Q. and Gao, W. C. (2011) Cellular prion protein promotes glucose uptake through the Fyn-HIF-2${\alpha}$-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci. 102, 400-406.   DOI
26 Oliphant, R., Nicholson, G. A., Horgan, P. G., Molloy, R. G., McMillan, D. C. and Morrison, D. S. (2013) Deprivation and colorectal cancer surgery: longer-term survival inequalities are due to differential postoperative mortality between socioeconomic groups. Ann. Surg. Oncol. 20, 2132-2139.   DOI
27 McEwan, J. F., Windsor, M. L. and Cullis-Hill, S. D. (2009) Antibodies to prion protein inhibit human colon cancer cell growth. Tumour Biol. 30, 141-147.   DOI
28 McLennan, N. F., Brennan, P. M., McNeill, A., Davies, I., Fotheringham, A., Rennison, K. A., Ritchie, D., Brannan, F., Head, M. W., Ironside, J. W., Williams, A. and Bell, J. E. (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am. J. Pathol. 165, 227-235.   DOI
29 Mehrpour, M. and Codogno, P. (2010) Prion protein: From physiology to cancer biology. Cancer Lett. 290, 1-23.   DOI
30 Park, J. Y., Jeong, J. K., Lee, J. H., Moon, J. H., Kim, S. W., Lee, Y. J. and Park, S. Y. (2015) Induction of cellular prion protein (PrPC) under hypoxia inhibits apoptosis caused by TRAIL treatment. Oncotarget 6, 5342-5353.
31 Zhang, N., Yin, Y., Xu, S. J. and Chen, W. S. (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13, 1551-1569.   DOI
32 Pignon, J. P., Bourhis, J., Domenge, C. and Designe, L. (2000) Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 355, 949-955.   DOI
33 Siegel, R. L., Miller, K. D. and Jemal, A. (2017) Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7-30.   DOI
34 Yun, C. W., Yun, S., Lee, J. H., Han, Y. S., Yoon, Y. M., An, D. and Lee, S. H. (2016) Silencing Prion Protein in HT29 Human Colorectal Cancer Cells Enhances Anticancer Response to Fucoidan. Anticancer Res. 36, 4449-4458.   DOI