• Title/Summary/Keyword: C-D Phantom

Search Result 99, Processing Time 0.025 seconds

Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001 (NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.

Distribution and Management of Spatial Dose Rate in Neuro Angio Room (두개부 혈관조영실에서 공간산란선량의 분포와 관리)

  • Lee, Mi-Hwa;Jung, Hong-Ryang;Lim, Cheong-Hwan;Hong, Dong-Hee;Kim, Ki-Jeong;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.427-435
    • /
    • 2014
  • This study is performed in the intervention unit, during interventional procedures and in accordance with the direction and distance during the exposure indoor space is to measure the dose. I was classified at an angle of $45^{\circ}$ counterclockwise from the phantom. Seven(A, B, C, D, E, F, G) were classified as direction. Length was measured from the center of the phantom. Each direction 50cm, 100cm, 150cm, 200cm were classified. I was analyzed by measuring of frontal, lateral, Bi-plan fluoroscopic Spatial dose rate in all 28 points. Measured dose was the highest at 50cm and over 200cm, dose was rapidly decreasing as increased distance. Dose was different more than nine times depending on the distance and direction, Installation of shielding wall can reduce exposure about 84.52% to 93.54%.

Qualitative Evaluation of 2D Dosimetry System for Helical Tomotherapy (2차원 토모테라피 선량측정시스템의 정성적 평가)

  • Ma, Sun Young;Jeung, Tae Sig;Shim, Jang Bo;Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • The purpose of this study is to see the feasibility of the newly developed 2D dosimetry system using phosphor screen for helical tomotherapy. The cylindrical water phantom was fabricated with phosphor screen to emit the visible light during irradiation. There are three types of virtual target, one is one spot target, another is C-shaped target, and the other is multiple targets. Each target was planned to be treated at 10 Gy by treatment planning system (TPS) of tomotherapy. The cylindrical phantom was placed on the tomotherapy table and irradiated as calculations of the TPS. Every frame which acquired by CCD camera was integrated and the doses were calculated in pixel by pixel. The dose distributions from the fluorescent images were compared with the calculated dose distribution from the TPS. The discrepancies were evaluated as gamma index for each treatment. The curve for dose rate versus pixel value was not saturated until 900 MU/min. The 2D dosimetry using the phosphor screen and the CCD camera is respected to be useful to verify the dose distribution of the tomotherapy if the linearity correction of the phosphor screen improved.

A Study on New Shielding Method for Minimizing Thyroid Oran Dose on Chest Radiography Used Automatic Exposure Control (자동노출조절장치를 이용한 흉부 방사선검사 시 갑상샘 장기선량 최소화를 위한 새로운 차폐 방법에 관한 연구)

  • Joo, Young-Cheol;Hong, Dong-Hee;Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.323-329
    • /
    • 2020
  • The purpose of this study is to investigate the effect of radiation shielding on the thyroid organ dose and image quality during Chest PA examination using automatic exposure control system. This study was conducted in the patient posture and examination conditions such as Chest PA using human model phantom. An experiment without shielding was set as a control group (non) and the cases of using paper coated with a contrast agent (contrast) and bismuth (bismuth) were used as experimental groups. Compared to non-shielded(non), the dose at bismuth increased about 7% in C(cervical vertebrae)5 and C6 and 14% in C7 and contrast showed dose increases of about 17 to 19% in C5 and C6 and about 21% in C7. As a result of the image quality comparison, when measured in the center of the cervical vertebrae, both SNR and CNR in bismuth increased about 40% higher than non, and contrast showed about 8 to 9% improvement. Compared with soft tissues of the cervix, bismuth reduced SNR by about 15% and CNR by about 13%, in contrast, SNR decreased by 11%, and CNR decreased by about 10%. In the Chest PA using AEC, the method of using the shield in front of the collimator has the advantage to observe the anatomical structure of the neck area well compared to the method using the lead. However, the dose at the neck can be increased by 7-21% depending on shielding materials.

6MV Photon Beam Commissioning in Varian 2300C/D with BEAM/EGS4 Monte Carlo Code

  • Kim, Sangroh;Jason W. Sohn;Cho, Byung-Chul;Suh, Tae-Suk;Choe, Bo-Yong;Lee, Hyoung-Koo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.113-115
    • /
    • 2002
  • The Monte Carlo simulation method is a numerical solution to a problem that models objects interacting with other objects or their environment based upon simple object-object or object-environment relationships. In spite of its great accuracy, It was turned away because of long calculation time to simulate a model. But, it is used to simulate a linear accelerator frequently with the advance of computer technology. To simulate linear accelerator in Monte Carlo simulations, there are many parameters needed to input to Monte Carlo code. These data can be supported by a linear accelerator manufacturer. Although the model of a linear accelerator is the same, a different characteristic property can be found. Thus, we performed a commissioning process of 6MV photon beam in Varian 2300C/D model with BEAM/EGS4 Monte Carlo code. The head geometry data were put into BEAM/EGS4 data. The mean energy and energy spread of the electron beam incident on the target were varied to match Monte Carlo simulations to measurements. TLDs (thermoluminescent dosimeter) and radiochromic films were employed to measure the absorbed dose in a water phantom. Beam profile was obtained in 40cm${\times}$40cm field size and Depth dose was in 10cm${\times}$10cm. At first, we compared the depth dose between measurements and Monte Carlo simulations varying the mean energy of an incident electron beam. Then, we compared the beam profile with adjusting the beam radius of the incident electron beam in Monte Carlo simulation. The results were found that the optimal mean energy was 6MV and beam radius of 0.1mm was well matched to measurements.

  • PDF

Effect of Carbon Couch Side Rail and Vac-lok In case of Lung RPO irradiation (Lung RPO 선량전달시, Carbon Couch Side Rail과 Vac-lok이 미치는 영향)

  • Kim, Seok Min;Gwak, Geun Tak;Lee, Seung Hun;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.27-34
    • /
    • 2018
  • Purpose : To evaluate the effect of carbon couch side rail and vacuum immobilization device in case of lung RPO irradiation. Materials and Methods : The 10, 20, 30 mm thickness of vac-lok's right side were obtained. To measure of doses, glass dosimeters were used and measured reference point is left lung center at the phantom. A, B, C, and D points are left, right, down, and up directions based on the center point. In the state of Side-Rail-Out, place the without vac-lok, with the thickness of 10, 20, and 30 mm vac-lok. After the glass dosimeters was inserted in center, A, B, C, and D points, 100 MU of 6 MV X-ray were irradiated to the referenced center point in the condition of $10{\times}10cm^2$ field size, SAD 100 cm, gantry angle 225, 300 MU/min dose rate. Five measurements were made for each point. In the state of Side-Rail-In, five measurement were made for each point under the same conditions. The average is measured on each of the five Side-Rail-Out and Side-Rail-In measurements. Results : In the presence of side rail, the dose reduction ratio was -11.8 %, -12.3 %, -4.1 %, -12.3 %, -7.3 % for each A, B, C, and D points. In the state of Side-Rail-Out, the dose reduction ratio for the using 10 mm thickness of vac-lok was -0.9 % than without vac-lok. The dose reduction ratio for the using 20 mm thickness of vac-lok was -2.0 %, for the using 30 mm thickness of the vac-lok was -3.0 % than without vac-lok. In the state of Side-Rail-In, the dose reduction ratio for the using 10 mm thickness of vac-lok was -1.0 % than without vac-lok. The dose reduction ratio for the using 20 mm vac-lok was -2.1 %, for the using 30 mm vac-lok was -3.0 % than without vac-lok. Based on the value of no vac-lok dose in the Side-Rail-In state, The dose reduction ratios for the using 10 mm, 20 mm and 30 mm thickness of vac-loks In the Side-Rail-Out that the center point were -12.7 %, -13.7 %, -14.2 % and -12.8 %, -13.8 %, -14.5 % respectively at point A. The dose reduction ratios for the same conditions to the B point were -4.9 %, -6.1 %, -7.1 % and -13.4 %, -14.4 %, -15.5 % respectively at point C. The dose reduction ratios for the same conditions to the D point were -8.4 %, -9.0 %, -10.4 % respectively. Conclusion : The attenuation was caused by presence of side rails and thickness of vac-lok. Pay attention to these attenuation factors, making it a more effective radiation therapy.

  • PDF

두 경부 종양의 C-T 영상을 이용한 방사선 치료계획시 Artifact가 선량 계산에 미치는 영향

  • 김경태;주상규
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.109-112
    • /
    • 2001
  • 1. 목적 : head and neck cancer 환자의, C-T 영상을 이용한 방사선치료계획시 치과 보철물에 의해 발생하는 artifact가 선량 계산에 미치는 영향을 분석하고자 한다. 2. 재료 및 방법:두 경부와 유사한 크기의 Polystyrenes Phantom ($20{\times}20{\times}25cm^3$) 을 제작하고, 팬톰내에 금으로 인공보철물을 제작하여 보철물 부착 전.후를 C-T Scan (High Speed Advantage, GE, US) 하였다. artifact에 의한 영향을 쉽게 분석하기위해 팬톰내에 다른 구조물은 만들지 않았으며 두가지 방법으로 얻어진 영상을 이용하여 조사면의 크기와 조사 방향을 변화 시켜 가며 1문 조사(SSD 100 cm)에 의한 치료 계획(3D RTP system, Prowess, US)을 수립하여 기준점(5,10 cm depth)에서의 선량 변화를 비교 분석하였다. 아울러 3회 반복 scan하여 artifact에 발생 유형과 CTNo을 이용한 density을 분석하였다. 3. 결과: C-T Scan으로 얻어진 image 상에 나타난 Artifact는 CT no $-1000{\sim}+2775$(기준 $-1000{\sim}+3700$)까지의 다양한 값을 가지며 보철물을 기준으로 방사형태로 분포하였다. artifact가 선량 계산에 미치는 영향을 분석한 결과 보철물 사용시 5cm깊이의 기준점에서 절대선량은 평균 $+1.5{\pm}2.8\%$, 10 cm 깊이에서는 $+1.8{\pm}3.5\%$의 오차를 보였다. 조사방향에 의한 오차는 artifact에 대해 측면 조사한(gantry $270^{\circ}$)경우에서 높게 관찰되었다. 4. 결론: 두 경부 종양의 방사선 치료시 치과 보철물에 의한 artifact는 흔히 관찰가능하며 본 실험을 통해 다양한 형태와 다양한 density을 가짐을 알수있었다. 영상에 나타난 정도에 비해 선량계산에 미치는 평균 오차는 낮게 평가되었지만 조사 방향과 보철물의 위치에 따라 변동이 크게 나타날 수 있어 치료 계획시 가능한 artifact의 영향을 적게 받는 빔의 선택이 정확한 선량 계산에 도움을 줄 것으로 사료된다.

  • PDF

Fetal dose from Head and Neck Tomotherapy Versus 3D Conformal Radiotherapy

  • Park, So Hyun;Choi, Won Hoon;Choi, Jinhyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.156-160
    • /
    • 2019
  • Background: To compare the dose of radiation received by the fetus in a pregnant patient irradiated for head and neck cancer using helical tomotherapy and three-dimensional conformal radiation therapy (3DCRT). Materials and Methods: The patient was modeled with a humanoid phantom to mimic a gestation of 26 weeks. Radiotherapy with a total dose of 2 Gy was delivered with both tomotherapy (2.5 and 5.0 cm jaw size) and 3DCRT. The position of the fetus was predicted to be 45 cm from the field edge at the time of treatment. The delivered dose was measured according to the distance from the field edge and the fetus. Results and Discussion: The accumulated dose to the fetus was 1.6 cGy by 3DCRT and 2 and 2.3 cGy by the 2.5 and 5 cm jaw tomotherapy plans. For tomotherapy, the fetal dose with the 2.5 cm jaw was lower than that with the 5 cm jaw, although the radiation leakage was greater for 2.5 cm jaw plan due to the 1.5 fold longer beam-on time. At the uterine fundus, tomotherapy with a 5 cm jaw delivered the highest dose of 2.4 cGy. When the fetus moves up to 35 cm at the 29th week of gestation, the resultant fetal doses for 3DCRT and tomotherapy with 2.5 and 5 cm jaws were estimated as 2.1, 2.7, and 3.9 cGy, respectively. Conclusion: For tomotherapy, scattering radiation was more important due to the high monitor unit values. Therefore, selecting a smaller jaw size for tomotherapy may reduce the fetal dose. however, evaluation of risk should be individually performed for each patient.

Effects of Ultrasonic Scanner Setting Parameters on the Quality of Ultrasonic Images (초음파 진단기의 설정 파라미터가 영상의 질에 미치는 효과)

  • Yang, Jeong-Hwa;Lee, Kyung-Sung;Kang, Gwan-Suk;Paeng, Dong-Guk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Setting parameters of Ultrasonic scanners influence the quality of ultrasonic images. In order to obtain optimized images sonographers need to understand the effects of the setting parameters on ultrasonic images. The present study considered typical four parameters including TGC (Time Gain Control), Gain, Frequency, DR (Dynamic Range). LCS (low contrast sensitivity) was chosen to quantitatively compare the quality of the images. In the present experiment LCS targets of a standard ultrasonic test phantom (539, ATS, USA) were imaged using a clinical ultrasonic scanner (SA-9000 PRIME, Medison, Korea). Altering the settings in the parameters of the ultrasonic scanner, 6 LCS target images (+15 dB, +6 dB, +3 dB, -3 dB, -6 dB, -15 dB) to each setting were obtained, and their LCS values were calculated. The results show that the mean pixel value (LCS) is the highest at the max setting in TGC, mid to max in gain and pen mode in frequency and 40-66 dB in DR. Among all images, the image being the highest in LCS was obtained at the setting of DR 40 dB. It is expected that the results will be of use in setting the parameters when ultrasonically examining masses often clinically found In either solid lesions (similar to +15, +6, +3 dB targets) or cystic lesions (similar to -15, -6, -3 dB targets).

MR spectroscopy using single-shot RF localization technique (단일 RF 펄스를 사용한 3차원 체적 선택 방법을 이용한 MR 스펙트로 스코피)

  • Rim, C.Y.;Chun, K.W.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.51-54
    • /
    • 1989
  • In last several years, a number of volume localization techniques, such as ISIS, VSE, SPARS and STEAM etc., have been developed for the MR spectroscopy. These localizing techniques, however, require application of several RF pulses for the 3-D volume selection and suffer from T1 and T2 decays due to relatively long RF excitation time. In this paper, we propose a single-shot RF pulse localization technique to achieve the localized 3-D volume selection. This technique combines the cylindrical volume selection technique with a radial gradient coil with single-shot RF pulse and the oscillating selection gradient technique, so thai it minimizes the volume selection time. We report some experimental results obtained with the proposed method which appears promising for 3-D volume imaging and localized spectroscopy.

  • PDF