Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001

NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가

  • Kim, Jin-Su (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science Major, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science Major, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science Major, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science Major, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science Major, Seoul National University College of Medicine)
  • 김진수 (서울대학교 의과대학 핵의학교실, 방사선응용생명과학 협동과정) ;
  • 이재성 (서울대학교 의과대학 핵의학교실, 방사선응용생명과학 협동과정) ;
  • 이동수 (서울대학교 의과대학 핵의학교실, 방사선응용생명과학 협동과정) ;
  • 정준기 (서울대학교 의과대학 핵의학교실, 방사선응용생명과학 협동과정) ;
  • 이명철 (서울대학교 의과대학 핵의학교실, 방사선응용생명과학 협동과정)
  • Published : 2004.06.30

Abstract

Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.

목적: 전신용 PET에 대한 표준 성능 평가 방법으로 NEMA NU2-2001이 확립되어 제안되었다. 따라서 새로이 설치되는 PET 스캐너뿐 아니라 기존에 사용 중인 스캐너에 대한 성능 평가가 이 표준 방법에 따라서 새로이 이루어 져야 한다. 이 연구에서는 NEMA NU2-2001 방법을 이용하여 CTI ECAT EXACT 47 PET 스캐너의 공간해상도, 민감도, 산란분획, NECR 등을 측정하였다. 대상 및 방법: 공간해상도를 평가하기 위하여 축 방향 시야의 정 가운데와 축 방향 시야 길이의 1/4을 벗어난 횡단면에 F-10을 채운 유리관(내경 1.1 mm)을 횡단면의 중심에서 1, 10 cm 떨어진 지점에 축 방향과 평행하게 위치시킨 후 PET 영상을 얻었다. 민감도를 측정하기 위하여 폴리에틸렌 및 알루미늄 관에 F-18을 채운 후 불응시간 손실이 1%를 넘지 않는 것을 확인한 후 영상을 획득하였다. 산란분획 및 최적 영상 획득 조건을 얻기 위하여 NECR을 NEMA 산란 팬텀을 이용하여 측정하였다. 결과: FBP재구성 방법(화소 크기: $0.515{\times}0.515mm^2$)으로 영상을 재 구성했을 때 스캐너의 중심에서 1cm 벗어난 지점에서 축방향, 횡축방향 공간 분해능은 0.62, 0.66 cm (FBP, 2D와 3D), 0.67, 0.69 cm (FBP, 2D와 3D)이었고 중심에서 10 cm 벗어난 지점에서 축방향, 횡축반경방향, 횡축접선방향 공간 분해능은 0.72, 0.68 mm (FBP, 2D와 3D), 0.63, 0.66 mm (FBP, 2D와 3D), 0.72, 0.66 mm (FBP, 2D와 3D)이었다. 민감도는 스캐너의 횡축방향 708.6 (2D), 2931.3 (3D) counts/sec/MBq, 횡축방향 중심에서 10cm 벗어난 지점에서 728.7 (2D), 3398.2 (3D) counts/sec/MBq 이었다. 산란 분획은 0.19 (2D), 0.49 (3D)이었고 최고 참 계수율과 NECR은 2차원 영상 획득 모드에서 40.1 kBq/mL 일 때 64.0 kcps, 40.1 kBq/mL 일 때 49.6 kcps, 3차원 영상 획득 모드에서 4.76 kBq/mL 일 때 53.7 kcps, 4.47 kBq/mL 일 때 26.4 kcps이었다. 결론: 이 실험에서 NEMA NU2-2001로 측정한 PET스캐너의 물리적 특성은 PET스캐너에 대한 객관적 평가 및 최적화 된 영상 획득과 분석에 유용할 것이다.

Keywords

References

  1. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, Simcic V et al. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med. 2002 Oct; 43(10): 1398-409
  2. National Electrical Manufacturers Association: NEMA Standards Publication NU2-2001: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA, National Electrical Manufacturers Association, 2001
  3. Liow JS, Strother SC. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol. 1993 Jan; 38(1): 55-70
  4. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1998. p. 55-109
  5. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. $3^{rd}$ ed.: Elsevier Science (U.S.A.); 2003. p.333
  6. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003 Nov;30(11):1574-97
  7. Tarantola G, Zito F, Gerundini P. PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med. 2003 May; 44(5): 756-69