• 제목/요약/키워드: C-C Bond formation

검색결과 240건 처리시간 0.027초

Correlation Between Cross Interaction Constant and Bond Length in the S$_N$2 Transition State

  • Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.179-182
    • /
    • 1988
  • A simple correlation between cross interaction constants ${\rho}_{ij}$ and bond lengths in the transition state was obtained ; it has been shown that ${\rho}_{ij}$ corresponds to force constant of activation, which in turn is related to bond length by Badger's rule involving only universal constants. A satisfactory correlation between 4-31G ab initio calculated values of bond length and force constant for C-X streching in the transition state of the methyl transfer reaction, $X^-\;+\;CH_3X\;=\;XCH_3\;+\;X^-$, indicated that Badger's rule can be extended to bonds in the transition state. Independence of ${\rho}_{ij}$ values from the variable charge transmission of reaction centers has been demonstrated with nearly constant, experimentally determined I${\rho}$XYI values, and hence similar degree of bond formation, for various $S_N2$ reactions.

Enzymatic Characterization and Comparison of Two Steroid Hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces Species

  • Subedi, Pradeep;Kim, Ki-Hwa;Hong, Young-Soo;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.464-474
    • /
    • 2021
  • Bacterial cytochrome P450 (CYP) enzymes are responsible for the hydroxylation of diverse endogenous substances with a heme molecule used as a cofactor. This study characterized two CYP154C3 proteins from Streptomyces sp. W2061 (CYP154C3-1) and Streptomyces sp. KCCM40643 (CYP154C3-2). The enzymatic activity assays of both CYPs conducted using heterologous redox partners' putidaredoxin and putidaredoxin reductase showed substrate flexibility with different steroids and exhibited interesting product formation patterns. The enzymatic characterization revealed good activity over a pH range of 7.0 to 7.8 and the optimal temperature range for activity was 30 to 37℃. The major product was the C16-hydroxylated product and the kinetic profiles and patterns of the generated hydroxylated products differed between the two enzymes. Both enzymes showed a higher affinity toward progesterone, with CYP154C3-1 demonstrating slightly higher activity than CYP154C3-2 for most of the substrates. Oxidizing agents (diacetoxyiodo) benzene (PIDA) and hydrogen peroxide (H2O2) were also utilized to actively support the redox reactions, with optimum conversion achieved at concentrations of 3 mM and 65 mM, respectively. The oxidizing agents affected the product distribution, influencing the type and selectivity of the CYP-catalyzed reaction. Additionally, CYP154C3s also catalyzed the C-C bond cleavage of steroids. Therefore, CYP154C3s may be a good candidate for the production of modified steroids for various biological uses.

Cationic Polymerization of Electron-Donor Monomers by 1,1,2,2-Tetracyanocyclopropylstyrene, A New Electron-Acceptor

  • Ju-Yeon Lee;Sung-Ok Cho;A. B. Padias;H. K. Hall, Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.271-273
    • /
    • 1991
  • Poly (N-vinylcarbazole) was obtained spontaneously by 1,1,2,2-tetracyanocyclopropylstyrene(1) in polar solvents such as dichloromethane and acetonitrile at room temperature. The polymerization reactions were faster in more polar solvent and were not proceeded in less polar solvents such as chloroform and diethyl ether. The formation of poly (N-vinylcarbazole) was explained by bond-forming initiation theory, in which the initiating species are zwitterionic tetramethylene intermediates.

Subunit 간의 disulfide 결합 형성에 의한 Mycobacterium smegmatis DevS histidine kinase의 불활성화 (Inactivation of the DevS Histidine Kinase of Mycobacterium smegmatis by the Formation of the Intersubunit Disulfide Bond)

  • 이진목;박광진;김민주;고인정;오정일
    • 생명과학회지
    • /
    • 제20권6호
    • /
    • pp.853-860
    • /
    • 2010
  • DevSR two-component system은 Mycobacterium smegmatis의 redox sensing에 관련된 주요한 regulatory system이다. DevSR system은 DevS histidine kinase와 DevR response regulator로 구성되어 있다. 저산소 조건에서 DevS histidine kinase는 활성화되어 DevR response regulator를 인산화 시키고, 인산화된 DevR response regulator는 DevR regulon의 transcriptional activator로 작용한다. DevS의 kinase activity는 DevS의 N-terminal에 위치한 GAF domain에 존재하는 heme의 ligand-binding state에 의해 결정된다. 본 연구에서는 C-terminal kinase domain의 redox-responsive cysteine (C547)이 DevS kinase activity의 redox-dependent control과 연관이 있음을 밝혔다. 산소가 존재할 때, C547 residue 사이의 disulfide bond의 형성은 DevS kinase activity를 불활성화 시킨다. $\beta$-mercaptoethanol과 dithiothreitol과 같은 환원제를 이용하여 산화된 DevS를 환원시켰을 때, DevS kinase activity가 복원된 것이 관찰되었다. 또한, C547을 alanine으로 치환했을 때, M. smegmatis의 DevS의 sensory 기능을 부분적으로 손상되는 것이 complementation 실험을 통해 in vivo 상에서 증명되었다.

도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구 (The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal)

  • 김희진;김부섭
    • 대한치과기공학회지
    • /
    • 제32권3호
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

목질탄화물 내의 화학 결합 변화 (Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures)

  • 조태수;이오규;최준원;조성택;김석권
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권1호
    • /
    • pp.87-93
    • /
    • 2009
  • 목재의 탄화과정에서 일어나는 화학적 변화를 알아보기 위하여 목탄의 기초물성과 화학결합양식의 변화를 조사하였다. 탄화온도 증가에 따른 pH 변화에 있어서는, $300^{\circ}C$와 같이 낮은 온도에서 탄화한 탄화물의 pH는 약산성 또는 중성에 가까우나, $600^{\circ}C$ 이상에서 탄화한 고온탄화물의 pH는 알칼리성을 띠는 것으로 나타났다. 또한 탄화온도가 증가하여 탄화정도가 더욱 진행되면, 탄재 내의 탄소함량이 증가하고, 수소와 산소함량이 감소하였으며, 이러한 경향은 $600^{\circ}C$까지의 탄화에서 현저하게 나타났으나, $600^{\circ}C$ 이상의 탄화온도에서는 그 변화가 완만하였다. 탄화온도가 높아짐에 다라 C-C 결합 비율이 증가하고, C-O-H 또는 C-O-R 결합 비율이 감소하는 경향이 뚜렷이 나타났다. 이는 C-O-H 등 산소를 포함한 결합이 분해되어 C-C결합 비율이 높아지고, 이는 새로운 관능기의 생성과도 관련되는 것으로 추정된다. 또한 탄화 온도의 상승에 따라 C=O결합 등의 비율이 다소 증가 또는 감소하는 것으로 보아, 일부는 분해, 생성, 재결합 등의 과정을 거치는 것으로 판단된다. 목탄의 이와 같은 화학적 변화에 대한 인식은 세공 특성 등 물리적인 파라메타만으로 흡착성을 이해하려고 할 때 발생하는 한계를 극복할 수 있는 사고가 되며, 또한 목탄의 성능개선과 신용도 개발의 기초가 될 것으로 생각된다.

Computational Mechanistic Study on the Catalyst-Free Intramolecular Carbon Insertion

  • 박윤수;정유성
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.111-124
    • /
    • 2013
  • Jianbo Wang의 그룹에서 최근 발표한 무촉매 분자 내 탄소-탄소 결합 형성 반응의 메커니즘을 계산 화학적으로 평가한다. 이 반응은 금속 촉매를 사용하지 않는다는 점과 Bio activity 를 갖는 Hydroxy-substituted Polycyclic Aromatic Compound (PAC)를 손쉽게 합성할 수 있다는 점에서 중요하다. Diazo moiety를 갖는 분자의 반응이 일반적으로 진행할 수 있는 세 가지 반응 경로가 제시되었고, DFT functional을 이용해 중간체 및 전이 상태에 대한 최적화 구조 및 에너지를 얻었다. 탄소-탄소 결합의 원천을 탐구하기 위해 Natural bond orbital charge calculation과 치환기 효과에 대한 계산이 수행되었다. 계산 결과, 중간체로 Triplet carbene을 형성하는 경로가 가장 불안정한 중간체를 형성했고, Tosylate가 해리되기 전 탄소-탄소 결합이 형성되는 경로가 가장 합리적인 반응경로임을 알 수 있었다.

  • PDF

Mechanism for the Reaction of Substututed Phenacyl Arenesulfonates with Substituted Pyridines under High Pressures

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1179-1182
    • /
    • 1997
  • The rates for the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines in acetone were measured by an electrical conductivity method at 1-2000 bars and 45 ℃. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ, represent the degree of Nu-C bond formation and that of C-L bond breaking. The magnitude of correlation interaction term ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX, |ρY| and ρZ are increased, but correlation interaction coefficient, |ρXZ| and ρYZ, are decreased. The results indicate that the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines probably moves from an associative SN2 to late-type SN2 mechanism by increasing pressure.

Geometries and Energies of S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Kim, Chan-Kyung;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.391-395
    • /
    • 1986
  • MNDO calculations were carried out to determine reactant complexes and transition states of the $S_N2$ reactions of $CH_3X\;+\;Y^-\;{\to}\;CH_3Y\;+\;X^-$ where X = F, Cl, CN and Y = CN, OH, F, Cl. The leaving group ability was found to vary inversely with the activation barrier, which in turn was mainly ascribable to the deformation energies accompanied with bond stretching of C-X bond and inversion of $CH_3$ group. The nucleophilicity was shown to be in the order $Cl^->F^->OH^->CN^-$ but the effect on the activation barrier was relatively small compared with that of the leaving group. The bond breaking and bond formation indices and energy decomposition analysis showed that the TS for the reaction of $CH_3$Cl occurs in the early stage of the reaction coordinate relative to that of $CH_3$F. It has been shown that the potential energy surface (PES) diagrams approach can only accommodate thermodynamic effects but fails to correlate intrinsic kinetic effects on the TS structure.