• Title/Summary/Keyword: C-C Bond formation

Search Result 240, Processing Time 0.023 seconds

Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile

  • Oh, Hyuck-Keun;Ku, Myoung-Hwa;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.935-938
    • /
    • 2005
  • Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to $\alpha-cyano-\beta$-phenylacrylamides (CPA; $YC_6H_4CH=C(CN)CONH_2$) have been investigated in acetonitrile at 25.0 ${^{\circ}C}$. The rate is first order with respect to BA and CPA and no base catalysis is observed. The addition of BA to CPA occurs in a single step in which the addition of BA to $C_{\beta}$ of CPA and proton transfer from BA to $C_{\alpha}$ of CPA take place concurrently with a four-membered cyclic transition state structure. The magnitude of the Hammett ($\rho_X$) and Bronsted ($\beta_X$) coefficients are rather small suggesting an early tansition state (TS). The sign and magnitude of the crossinteraction constant, $\rho_XY$ (= −D0.26), is comparable to those found in the normal bond formation processes in the $S_N2$ and addition reactions. The normal kinetic isotope effect ($k_H/k_D\;{\gt}$ 1.0) and relatively low ${\Delta}H^{\neq}$ and large negative ${\Delta}S^{\neq}$ values are also consistent with the mechanism proposed.

The Study of Alumina Ceramic to Metal Bonding (알루미나 소결체와 금속간의 접합에 관한 연구)

  • 김종희;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 1978
  • The basic mechanism of adherence in sintered high purity alumina ceramic-to-metal bonding was studied. Emphasis was placed on flux composition, porosity of the fired ceramics, and metallizing mixtures. The study was conducted on 95 and 99.5% alumina, using molydbenum-manganese, molybdenum-manganese-silicon dioxide metallizing compositions. Metallizing was performed in wet hydrogen (dew point, +17$^{\circ}C$) at 145$0^{\circ}C$ for 45min. This experiment indicated that adhernece mechanism of ultra high purity alumina ceramic was attributed to formation of $MnAl_2O_$4, and in the case of 95% alumina containing glass, the migration of glass from the interface into the void of the metal coating was the main role to the adhrence. It showed also that greater the bond-strength was resulted as porosity was increased.

  • PDF

Near IR Spectroscopic Studies on the Interaction between Acetamide and Lu$(dpm)_3$ in Carbon Tetrachloride

  • 최영상;김홍순;유정아;이상원;박정희;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.511-514
    • /
    • 1996
  • The interactions between Ln(dpm)3 [Ln3+=Eu3+, Yb3+, Pr3+, Sm3+, Tb3+and Ho3+; dpm=tris 2,2,6,6-tetramethylheptane-3,5-dionate] and acetamide in CCl4 solution were investigated using near IR absorption spectroscopy. From the measured 2 νC=O+ amide Ⅲ combination band of acetamide in the region of 2130-2180 nm(4695-4587 cm-1), it was found that acetamide is coordinating through its carbonyl oxygen atom to Ln(dpm)3[C=O…Ln(dpm)3)] and forms only 1 : 1 stoichiometric Ln(dpm)3- acetamide complex. The ΔHo values for the formation of Ln(dpm)3-acetamide obtained from the temperature studies are -39.1, -28.4, -25.5, -24.7, -21.1 and -17.7 kJ mol-1 for Eu(dpm)3, Yb(dpm)3, Pr(dpm)3, Sm(dpm)3, Tb(dpm)3 and Ho(dpm)3, respectively, which are larger than those of the hydrogen bond between amide and various hydrogen acceptors. Except Eu(dpm)3 and Yb(dpm)3, -ΔHovalue increases as the ionic size increases.

Chiral Recognition in Gas chromatographic Resolution of Amino -$^1H\;and^{13}C$ Nuclear magnetic resonance studies of hydrogen bonding in dinmide chiral stationary phases-

  • Park, Man-Ki;Yang, Jeong-Sun;Sohn, Dong-Hwan;Lee, Mi-Young
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.58-61
    • /
    • 1989
  • Studies of selectivity of hydrogen bond formation in chiral solute-solvent systems have been performed by $^1H\;and\;^{13}C$ nuclear magnetic resonance techniques. These data are correlated with the results of gas chromatographic investigations of the same systems. Interactions between the optically active solvent(N-(N-benzoyl-L-amino acid)-anilide) and optically active solute (N-trifluoroacetyl -L-alanyl isopropyl ester) were examined. NMR evidence indicated that hydrogen bonding interaction occurred between two N-H portion and on peptidyl carbonyl portion in stationary phase and solute molecule on three points. The association constants of solvent-solute interaction were calculated and the structure of the diastereomeric association complex between N-(N-benzoyl-L-valyl)-anilide and N-TFA-L-alanyl isopropyl ester was proposed.

  • PDF

Chemistry of the 3a,7a-Dihydro-1H-indole Esters. Aromatization by Bromine$^\dag$

  • Lee, Chang-Kiu;Ahn, Yu-Mi;Han Lee, In-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.311-314
    • /
    • 1986
  • A series of tetramethyl 1-substituted benzyl-3a,7a-dihydro-1H-indole-2,3,3a,4-tetracarboxylates were prepared and their reactions with bromine were examined. The initial reaction seemed to be the formation of the intermediate N-bromo quaternary ammonium bromide. This intermediate underwent aromatization with loss of the 3a-methoxycarbonyl group. Bromine replaced the N-substituent of the p-methoxybenzyl compound and addition of bromine occurred across the $C_6-C_7$ double bond of the indole ring. Bromination of the benzyl ring and aromatization occurred for the m-methoxybenzyl compound.

Preparation of Enantiomerically Pure Chiral builing block ((E)-4-(tributylstannanyl) but-3-en-2-ol) via lipase-mediated resolution

  • Lee, Tae-Ho;Ko, Hyo-Jin;Lee, Hye-Seung;Kim, Sang-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.179.1-179.1
    • /
    • 2003
  • Chiral building blocks have the importance in the pharmaceutical and agrochemical industries as well as in the development of rapid and efficient syntheses of bioactive compounds and natural product. Vinylstannane contains two synthetically useful functional groups (vinylstannane and allylic alcohol). The vinylstannane functional group can be used in C-C bond formation under a variety of conditions and the allylic alcohol functional can be used in hydroxyl-directed epoxidations, cyclopropanations, and sigmatropic rearrangements. (omitted)

  • PDF

The Versatile Conversion of Acyclic Amides to a-Alkylated Amines

  • Suh, Young-Ger;Lee, Do-Sang;Shin, Dong-Yun;Jung, Jae-Kyung;Kim, Seok-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.350.2-350.2
    • /
    • 2002
  • The reaction of N-acyliminium ion with a variety of nucleophiles is one of the powerful method to introduce various substituents at the a-carbon of an amine. Particularly this type of inter and intramolecular C-C bond formation can be effectively applied to the synthesis of the bioactive natural or unnatural compounds as well as many bioactive peptidomimetics. Accordingly. much attention has been devoted to the practical and efficient methods for the generation of acyliminium ion precursors though there are many important aspects in the reaction involving N-acyliminium ions. (omitted)

  • PDF

Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene

  • Paul, Dababrata;Kim, Hyun-Kook;Hong, Ki-Ryong;Kim, Tae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.659-663
    • /
    • 2011
  • The photodissociation dynamics of bromobenzene near 234 nm has been investigated using a two-dimensional photofragment ion-imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The nascent Br atoms are produced by the primary C-Br bond dissociation, which leads to the formation of $C_6H_5$ ($\tilde{X}$) and Br($^2P_j$, j = 1/2, 3/2). The observed translational energy distributions have been fitted by a single Boltzmann function and two Gaussian functions. Trimodal translational energy distributions of Br($^2P_j$) have been assigned to the direct/indirect dissociation mechanisms originating from the initially excited $^3({\pi},{\pi}^*)$ state. The assignments have been confirmed by the recoil anisotropy and distribution width corresponding to the individual components.

Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

  • Bae, Eun-Jeong;Kim, Ji-Hwan;Kim, Woong-Chul;Kim, Hae-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • PURPOSE. The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS. Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets ($25.0{\times}3.0{\times}0.5mm$) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (${\alpha}=.05$). RESULTS. The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION. In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength.