• Title/Summary/Keyword: C-Band Power Amplifier

Search Result 49, Processing Time 0.023 seconds

E-band low-noise amplifier MMIC with impedance-controllable filter using SiGe 130-nm BiCMOS technology

  • Chang, Woojin;Lee, Jong-Min;Kim, Seong-Il;Lee, Sang-Heung;Kang, Dong Min
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.781-789
    • /
    • 2020
  • In this study, an E-band low-noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) has been designed using silicon-germanium 130-nm bipolar complementary metal-oxide-semiconductor technology to suppress unwanted signal gain outside operating frequencies and improve the signal gain and noise figures at operating frequencies. The proposed impedance-controllable filter has series (Rs) and parallel (Rp) resistors instead of a conventional inductor-capacitor (L-C) filter without any resistor in an interstage matching circuit. Using the impedance-controllable filter instead of the conventional L-C filter, the unwanted high signal gains of the designed E-band LNA at frequencies of 54 GHz to 57 GHz are suppressed by 8 dB to 12 dB from 24 dB to 26 dB to 12 dB to 18 dB. The small-signal gain S21 at the operating frequencies of 70 GHz to 95 GHz are only decreased by 1.4 dB to 2.4 dB from 21.6 dB to 25.4 dB to 19.2 dB to 24.0 dB. The fabricated E-band LNA MMIC with the proposed filter has a measured S21 of 16 dB to 21 dB, input matching (S11) of -14 dB to -5 dB, and output matching (S22) of -19 dB to -4 dB at E-band operating frequencies of 70 GHz to 95 GHz.

Performances of Erbium-Doped Fiber Amplifier Using 1530nm-Band Pump for Long Wavelength Multichannel Amplification

  • Choi, Bo-Hun;Chu, Moo-Jung;Park, Hyo-Hoon;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The performance of a long wavelength-band erbium-doped fiber amplifier (L-band EDFA) using 1530nm-band pumping has been studied. A 1530nm-band pump source is built using a tunable light source and two C-band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L-band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L-band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm-band pump. The L-band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of -10dBm/ch. These results demonstrate that 1530nm-band pump can be used as a new efficient pump source for L-band EDFAs.

  • PDF

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Investigation of Pump Wavelength Dependence of Long-Wavelength-Band Erbium-Doped Fiber Amplifier using 1530nm-Band Pump (L 대역 EDFA 특성의 펌프 파장 의존성에 관한 연구)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1249-1255
    • /
    • 2008
  • 1530nm band has been studied as pump wavelength for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). The pump source is built using a tunable light source and cascaded conventional-band (C-band) EDFA. The L-band EDFA uses a forward pumping scheme. Within the 1530nm band, 1545nm pump demonstrates 0.45dB/mW gain coefficient, which is twice better than that of conventional 1480nm pumped EDFA. The noise figure of 1530nm pump is at worst 6.36dB, which is 0.75dB higher than that of 1480nm pumped EDFA. Such high gain coefficient indicates that the L-band EDFA consumes low power.

A study on Improving Intermodulaton Signal of the RF Power Amplifier Using Microwave Absorber (전파흡수체에 의한 전력증폭기의 혼변조 신호의 개선 효과에 관한 연구)

  • 양승국;전중성;김민정;예병덕;김동일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.92-96
    • /
    • 2003
  • In this paper, 30 W power Amplifier for IMT-2000 repeater was developed gain flatness and the third IMD (Intermodulation distortion) by Microwave absorber. The absorption ability of the absorber is measured up to -10 ㏈ and -4 ㏈ at 3.6 ㎓, 2.3 ㎓ band respectively. Non using absorber power amplifier has the gain over 57 ㏈, the gain flatness of ${\pm}$0.33 ㏈ and the third IMD of 27 ㏈c at 33.3 W output. Otherwise, using absorber power amplifier has the gain over 58㏈, the gain flatness of less than ${\pm}$0.9, the third IMD over 29 ㏈c at the same output power. As a result, the characteristic of the different type show improvement of 1 ㏈ in gain, 0.3 ㏈ in Gain flatness and 1.77 ㏈c in IMD.

  • PDF

A Review of SiC Static Induction Transistor (SIT) Development for High-Frequency Power Amplifiers

  • Sung, Y.M.;Casady, J.B.;Dufrene, J.B.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.99-106
    • /
    • 2001
  • An overview of Silicon Carbide (SiC) Static Induction Transistor (SIT) development is presented. Basic conduction mechanisms are introduced and discussed, including ohmic, exponential, and space charge limited conduction (SCLC) mechanisms. Additionally, the impact of velocity saturation and temperature effects on SCLC are reviewed. The small-signal model, breakdown voltage, power density, and different gate structures are also discussed, before a final review of published SiC SIT results. Published S-band (3-4 GHz) results include 9.5 dB of gain and output power of 120 W, and L-band (1.3 GHz) results include 400 W output power, 7.7 dB of gain, and power density of 16.7 W/cm.

  • PDF

A Design of Predistortion Linearizer Controlling Modified Individual Order IM Signal (변형된 혼변조 신호 개별 차수 조정 전치왜곡 선형화기 설계)

  • 김영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper, a new predistorter controlling modified individual order jntermodulation distortion signals is proposed. The proposed predistorter generates and controls predistorted third and high order IM signals independently. Using predistorted signals, jntermodulation distortion signals of power amplifier are suppressed effectively. The predistortion linearizer has been implemented to operate in Korean PCS basestation transmitting band (1840~1870MHz). The test results show that IMD3 and IMD5 (C/I) of power amplifier are improved more than 40dB and 23dB for CW two tone signals, respectively. The predistorter improves the adjacent channel power ratio (ACPR) more than 10dB at 885KHz offset point for CDMA (IS-95) signals.

Implementation of a CMOS RF Transceiver for 900MHz ZigBee Applications (ZigBee 응용을 위한 900MHz CMOS RF 송.수신기 구현)

  • Kwon, J.K.;Park, K.Y.;Choi, Woo-Young;Oh, W.S.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.175-184
    • /
    • 2006
  • In this paper, we describe a 900MHz CMOS RF transceiver using an ISM band for ZigBee applications. The architecture of the designed rx front-end, which consists of a low noise amplifier, a down-mixer, a programmable gain amplifier and a band pass filter. And the tx front-end, which consists of a band pass filter, a programmable gain amplifier, an up-mixer and a drive amplifier. A low-if topology is adapted for transceiver architecture, and the total current consumption is reduced by using a low power topology. Entire transceiver is verified by means of post-layout simulation and is implemented in 0.18um RF CMOS technology. The fabricated chip demonstrate the measured results of -92dBm minimum rx input level and 0dBm maximum tx output level. Entire power consumption is 32mW(@1.8VDD). Die area is $2.3mm{\times}2.5mm$ including ESD protection diode pads.

A Study on the Lens Amplifier for Wideband Spatial Power Combining (광대역 공간 전력 합성을 위한 렌즈 증폭기에 관한 연구)

  • Kwon Oh-Sun;Kwon Se-Woong;Lee Byoung-Moo;Yoon Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.483-489
    • /
    • 2006
  • In this paper, new wideband lens amplifiers are proposed for C-band wireless communication service. In order to obtain the wideband property, all components of the proposed lens amplifiers are designed with balanced structure and wideband characteristics. Fat dipole antenna as the input and output antenna, balanced amplifier as amplifying components, and coplanar stripline(CPS) as the delay line fer the beam focusing are used fur composing the stable wideband lens amplifier. The $5{\times}5$ 2D lens amplifier has the characteristics that the absolute gain is 7.5 dB, the EIPG is 37.4 dB at 6 GHz, and the 3-dB gain bandwidth is 19.8 %.

Parallel M-band DWT-LMS Algorithm to Improve Convergence Speed of Nonlinear Volterra Equalizer in MQAM System with Nonlinear HPA (비선형 HPA를 가진 M-QAM 시스템에서 비선형 Volterra 등화기의 수렴 속도 향상을 위한 병렬 M-band DWT-LMS 알고리즘)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.627-634
    • /
    • 2007
  • When a higher-order modulation scheme (16QAM or 64QAM) is applied to the communications system using the nonlinear high power amplifier (HPA), the performance can be degraded by the nonlinear distortion of the HPA. The nonlinear distortion can be compensated by the adaptive nonlinear Volterra equalizer using the low-complexity LMS algorithm at the receiver. However, the LMS algorithm shows very slow convergence performance. So, in this paper, the parallel M-band discrete wavelet transformed LMS algorithm is proposed in order to improve the convergence speed. Throughout the computer simulations, it is shown that the convergence performance of the proposed method is superior to that of the conventional time-domain and transform-domain LMS algorithms.