• Title/Summary/Keyword: C-14

Search Result 14,762, Processing Time 0.043 seconds

Leaching characteristics of the bipyridylium herbicide paraquat in soil column (토양 column 중 bipyridylium계 제초제 paraquat의 용탈 특성)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • The leaching behaviour of $^{14}C$-paraquat in soil was investigated using soil columns (5 cm I.D. ${\times}$ 30 cm H.) parked with two soils of different physicochemical properties. $^{14}C$-Activities leached from the soil A (loam) columns with and without rice plants for 117 days were 0.42 and 0.54% of the originally applied, whereas those from the soil B (sandy loam) were 0.21 and 0.31%, respectively. $^{14}C$-Activities absorbed by rice plants from soil A and B were 3.87 and 2.79%, respectively, most of which remained in the root. Irrespective of soil types, more than 96% of the total $^{14}C$ resided in soil, mostly in the depth of $0{\sim}5$ cm. The water-extractable $^{14}C$ in soil was in the range of $6.10{\sim}9.01%$ of the total $^{14}C$ applied. The rest of $^{14}C$, which corresponds to non-extractable soil residues of [$^{14}C$]paraquat, was distributed in humic substances in the decreasing order of humin>humic acid>fulvic acid. The soil pH of the columns without rice plants increased after the leaching experiment due to the flooded anaerobic condition resulting in the reduction of the $H^{+}$ concentration, whereas that of the columns with rice plants did not increase by the offsetting effect of the acidic exudates from the roots. Low mobility of paraquat in soil strongly indicates that no contamination of ground water would be caused by paraquat residues in paddy soils under normal precipitation.

  • PDF

Distribution of CO2 produced from fossil fuel by accelerator mass spectrometry: in Daejeon (가속기 질량분석법에 의한 화석연료 기원 이산화탄소의 농도 분포: 대전지역을 중심으로)

  • Park, Junghun;Hong, Wan;Park, Ji Youn;Sung, Ki Seok;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • We have collected a batch of leaf samples at several main crossroads in Daejeon and a background site to obtain distribution of $CO_2$ (greenhouse gas) due to fossil fuel combustion. The leaf samples were treated with AAA method and ${\Delta}^{14}C$ values of them were measured using AMS. ${\Delta}^{14}C$ values of downtown sites were found to be lower by 27-102 ‰ than that of the background site, and the ratio of $CO_2$ originated from fossil fuel combustion in the atmosphere of Daejeon could be calculated from the differences of ${\Delta}^{14}C$ values. The average ${\Delta}^{14}C$ of the background site, around Kyeryong mountain, was measured to be $35{\pm}8$ ‰, and this value is lower than 66.3 ‰, which have been known as the backgdound values in USA.

Metabolism of $C^{14}-1-glucose$ and $C^{14}-6-glucose$ by the Ehrlich Ascites Turner Tissue (에르릿히 복수종양의 $C^{14}-1-$ 포도당 및 $C^{14}-6-$포도당 대사에 관한 연구)

  • Kwon, Chang-Rak
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1967
  • The metabolic patterns of C-1 and C-6-carbon atoms of glucose were observed in the tissue homogenates of the Ehrlich ascites tumor tissue which was incubated for 3 hours in the Dubnuff metabolic shaking incubator. $C^{14}-1-and\;C^{14}-6-glucose$ were used as tracers. The glucose media in which tissue homogenate was incubated was kept at a concentration of 200mg% glucose of carrier and appropriate amount of $C^{14}-1-or\;C^{14}-6-tracer$. At the end of 3 hour incubation, respiratory $CO_2$ samples trapped by alkaline which is placed in the tenter well of incubation flask were analyzed for the total $CO_2$ production rates and their radioactivities. The tissue homogenate samples after incubation were analyzed for their concentrations of glucose, lactate, pyruvate and glycogen and calculations were made on the glucose consumption rate, pyruvate and lactate accumulation rates. The following results were obtained. Data obtained in each group are as follows: 1. In the tissue homogenate, which was incubated with $C^{14}-1-glucose as a substrate, total $CO_2$ production rate averaged $19.0{\pm}5.0{\mu}M/hr/gm$ and the mean specific activity of respiratory $CO_2$ was $840{\pm}296\;cpm/mgC.$ Relative specific activity (RSA) which means the fraction of $CO_2$ derived from medium $C^{14}-1-glucose$ to total $CO_2$ production rate was calculated by ratio of SA of respiratory $CO_2$ and medium $C^{14}-1-glucose.$ RSA was $14.3{\pm}5.0%,$ Accordingly actual $CO_2$ production rate from medium $C^{14}-1-glucose$ showed a mean value of $2.79{\pm}1.35\;{\mu}m$ of which amount was equivalent to the mean value of total glucose consumption rate $(RGDco_2)$, namely, $5.1{\pm}1.3%.$ Lactate and pyruvate appearance rates averaged $7.13{\pm}1.26\;and\;0.21{\pm}0.02{\mu}M/hr/gm,$ respectively. Assuming that these 3 carbon compounds appeared in the medium were derived from glucose, calculations were made that relative glucose disappearance rate into lactate $(RGD_L)$ was $38.0{\pm}5.4%\;and\;RGD_P$ was $1.23{\pm}0.03%.$ Therefore, about 43.3% of the total glucose consumed were accounted for by conversion into the respiratory $CO_2$, lactate and pyruvate. 2. In the second group, which was incubated with $C^{14}-1-glucose$ as a substrate, glucose consumption rate, lactate and pyruvate appearance rates showed almost the same order as the values of the $C^{14}-1-glucose$ substrate group. However, RSA was remarkably decreased showing a mean value of $1.02{\pm}0.13%.$ This fact means that the C-6 carbon of glucose take the minor part in the oxidative metabolism of glucose. The glycogen level in both substrate tissue homogenate showed less than 0.3% of tissue weight. These low value suggested that there was an inhibition of carbohydrate synthesis in the Ehrlich ascites tumor tissue. 3. The catabolic pathway of glucose in the tumor tissue were analyzed on the basis of Bloom's principle from the values of RSA. It was found that in the tumor tissue more than 90% of $CO_2$ derived from glucose were oxidized via the alternate pathway other than principal EMP-TCA cycle such as hexose monophosphate pathway (HMP). From the data described above, it was assumed that in the Ehrlich tumor tissue anaerobic glycolysis proceeds normally although, the oxidation of products of anaerobic glycolysis via the TCA cycle is inhibited resulting in the accumulation of lactate and almost all of oxidative energy from glucose is released by oxidative pathway such as HMP.

  • PDF

Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte (이온성 액체 복합 Poly(ethylene oxide)(PEO) 고체 고분자 전해질의 전기화학적 특성)

  • Park, Ji-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2016
  • In this study, we prepared an ionic liquid composite solid polymer electrolyte (PEO-LiTFSI-$Pyr_{14}TFSI$) with poly(ethylen oxide), lithium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by blending-cross linking process. Although the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte displayed a small peak at 4.4 V, it had high electrochemical oxidation stability up to 5.7 V. Ionic conductivity of the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte increased with increasing temperature from $10^{-6}S\;cm^{-1}$ at $30^{\circ}C$ to $10^{-4}S\;cm^{-1}$ at $70^{\circ}C$. To investigate the electrochemical properties, the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte assembled with $LiFePO_4$ cathode and Li-metal anode. At 0.1 C-rate, the cell delivered $40mAh\;g^{-1}$ for $30^{\circ}C$, $69.8mAh\;g^{-1}$ for $40^{\circ}C$ and $113mAh\;g^{-1}$ for $50^{\circ}C$, respectively. The PEO-LiTFSI-$Pyr_{14}TFSI$ solid polymer electrolyte exhibited good charge-discharge performance in Li/SPE/$LiFePO_4$ cells at $50^{\circ}C$.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Magnetic Properties of Melt-spun Fe-Nd-C Alloys (급속응고에 의해 제조된 Fe-Nd-C 합금의 자기적 특성)

  • Jang, T.S.;Lim, K.Y.;Cho, D.H.
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1063-1069
    • /
    • 1997
  • For me1t-spun Fe-Nd-C alloys, variation of phase development and magnetic properties with the variety of alloy compositions and production conditions were investigated. To find out whether hard magnetic $Fe_{14}Nd_2C$ is crystallized direct1y from the melt by rapid quenching, the phase development of the as-spun ribbons spun at various speed was a1so studied. For the ribbons spun at 10m/s, ${\alpha}-Fe$ was the primary crystallization phase followed by the secondary $Fe_{17}Nd_2C$. At 20m/s ${\alpha}-Fe$ was suppressed so that the primary $Fe_{17}Nd_2C$ coexisted with the secondary ${\alpha}-Fe$ and the amorphous phase. Above 30m/s the ribbons were a1most amorphous, and the amorphization was complete at 40m/s. $Fe_{14}Nd_2C$ therefore was not found in as-spun state but obtained after heat treating the ribbons. The effective temperature range ($700{\sim}900^{\circ}C$) in which $Fe_{14}Nd_2C$ can be obtained was wider than that of a cast alloy. An alloy made with the wheel speed of 20 or 30m/s yielded higher coercivities after heat treatment. In iron-rich Fe-Nd-C, the composition range in which a high coercivity (more than 10kOe) is expected is narrow, i.e., 77~78 Fe and 7~8 C(at.%).

  • PDF

Preparation of Nano-sized Pt Powders by Solution-phase Reduction (액상환원법(液相還元法)에 의한 백금(白金) 나노분말(粉末) 제조(製造))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Cho, Sung-Wook;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.36-40
    • /
    • 2007
  • Platinum plays an important role in many applications because of its extraordinary physical and chemical properties. All these applications require the use of platinum in the finely divided state. Therefore the preparation of platinum nanoparticles by reducing platinum-surfactant salt with reducing agent in the solution was investigated in this study. The net interaction between C14TABr and $H_2[PtCl_6]$ in aqueous solution results in the formation of $[C14TA]_2[PtCl_6]$. The concentration of C14TABr and the concentration of $H_2[PtCl_6]$ has to be above cmc and 0.32 mM, respectively in order to obtain complex-micelle aggregation for mono dispersed Pt particles. Pt particle size increases with increasing $H_2[PtCl_6]$ and C14TABr concentration. And the shape of Pt particles was well controlled with increasing surfactant concentration.

Thermal characteristics of spent activated carbon generated from air cleaning units in korean nuclear power plants

  • So, Ji-Yang;Cho, Hang-Rae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.873-880
    • /
    • 2017
  • To identify the feasibility of disposing of spent activated carbon as a clearance level waste, we performed characterization of radioactive pollution for spent activated carbon through radioisotope analysis; results showed that the C-14 concentrations of about half of the spent activated carbon samples taken from Korean NPPs exceeded the clearance level limit. In this situation, we selected thermal treatment technology to remove C-14 and analyzed the moisture content and thermal characteristics. The results of the moisture content analysis showed that the moisture content of the spent activated carbon is in the range of 1.2-23.9 wt% depending on the operation and storage conditions. The results of TGA indicated that most of the spent activated carbon lost weight in 3 temperature ranges. Through py-GC/MS analysis based on the result of TGA, we found that activated carbon loses weight rapidly with moisture desorption reaching to $100^{\circ}C$ and desorbs various organic and inorganic carbon compounds reaching to $200^{\circ}C$. The result of pyrolysis analysis showed that the experiment of C-14 desorption using thermal treatment technology requires at least 3 steps of heat treatment, including a heat treatment at high temperature over $850^{\circ}C$, in order to reduce the C-14 concentration below the clearance level.

Change of Organoleptic Properties with Heating Concentration of Oriental Melon Juice (참외주스 가열농축에 따른 관능적 특성 변화)

  • 이기동;권승혁;이명희;김숙경;주길재;권중호
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.130-133
    • /
    • 2004
  • This study was carried out to observe the change of organoleptic properties of the juice prepared with various heating temperature and heating time. Organoleptic color showed maximum value at 94.95$^{\circ}C$ and 21.63 min and organoleptic aroma showed maximum value at 63.14$^{\circ}C$ and 20.38 min. Organoleptic taste showed maximum value at 96.63$^{\circ}C$ and 14.31 min and overall palatability showed maximum value at 97.18$^{\circ}C$ and 14.55 min. The best condition was 98$^{\circ}C$(heating temperature) and 13 min(heating time) at organoleptic evaluation of oriental melon juice.