• Title/Summary/Keyword: C-투수계수

Search Result 90, Processing Time 0.025 seconds

Thermo-hydraulic Modeling in Fault Zones (단층대에서의 열-수리적 거동 모델링)

  • Lee, Young-Min;Kim, Jong-Chan;Koo, Min-Ho;Keehm, Young-Seuk
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • High permeable faults are important geological structures for fluid flow, energy, and solute transport. Therefore, high permeable faults play an important role in the formation of hydrothermal fluid (or hot spring), high heat flow, and hydrothermal ore deposits. We conducted 2-D coupled thermal and hydraulic modeling to examine thermohydraulic behavior in fault zones with various permeabilities and geometric conditions. The results indicate discharge temperature in fault zones increases with increasing fault permeability. In addition, discharge temperature in fault zones is linearly correlated with Peclet number ($R^2=0.98$). If Peclet number is greater than 1, discharge temperature in fault zones can be higher than $32^{\circ}C$. In this case, convection is dominant against conduction for the heat transfer in fault zones.

Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete (융점 제어형 개질유황의 개발 및 이를 활용한 콘크리트의 특성 연구)

  • Kim, Jin-Hee;Choi, Jin Sub;Park, No Hyung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.261-267
    • /
    • 2014
  • In this study, we manufactured melting temperature controllable modified surfur (MS) and studied the properties of sulfur modified cement concrete (SMC). We investigated the effects of sulfur and pyridine content on melting temperature of MS. The reaction is confirmed by measuring Raman spectrophotoscopy. The SMC was produced at Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt% and 5, 10, 15 and 20 % of MS on the basis of conventional portland cement, respectively. And then physical properties such as compressive strength, splitting tensile strength and permeability of SMC were measured. As MS added, permeability was decreased, while strength and spalling properties were improved. To confirm the safety of MS and SMC, pyrolyzed gas chromatography (P-GC) and gas hazard test were conducted. The results showed that MS and SMC were relatively safe at an elevated temperature.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

Development and its APPLIcation of Computer Program for Slope Hazards Prediction using Decision Tree Model (의사결정나무모형을 이용한 급경사지재해 예측프로그램 개발 및 적용)

  • Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok;Ahn, Sang-Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.59-69
    • /
    • 2009
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in crystalline rocks like gneiss, granite, and so on, a prediction model was developed by the use of a decision tree model. The classification standard of the selected prediction model is composed of the slope angle, the coefficient of permeability and the void ratio in the order. The computer program, SHAPP ver. 1.0 for prediction of slope hazards around an important national facilities using GIS technique and the developed model. To prove the developed prediction model and the computer program, the field data surveyed from Jumunjin, Gangneung city were compared with the prediction result in the same site. As the result of comparison, the real occurrence location of slope hazards was similar to the predicted section. Through the continuous study, the accuracy about prediction result of slope hazards will be upgraded and the computer program will be commonly used in practical.

Evaluation of Rain Garden for Infiltration Capability and Runoff Reduction Efficiency (레인가든의 침투성능 및 유출저감효과 평가)

  • Yoo, Chulsang;Lee, Jinwook;Cho, Eunsaem;Zhu, Ju Hua;Choi, Hanna
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • This study conducted a field experiment to estimate the characteristics of the rain garden installed at the site near Haman, also proposed a one-dimensional model to simulate the infiltration and runoff from the rain garden. This model was used to evaluate the rain garden using the rainfall data after the installation and during the last 10 years. Also, this model was applied to the annual maximum rainfall events to quantify the size of the impervious area that the rain garden can offset the adverse effect. The results are summarized below. (1) Hydraulic conductivity of the rain garden was estimated to be about 0.0188 m/hr by the variable-stage experiment. Also, the simulation experiment using the last 10 years rainfall data over the entire roof area showed that the infiltration amount is about 90.38% out of the total rainfall. (2) Infiltration simulation of the annual maximum rainfall events during last 10 years showed that the rain garden can offset the impervious area with its size about 30 times of the rain garden surface.

Characteristics of Ternary Blended Cement Concrete Using Fly Ash and Silica Fume for Post-Tensioned Concrete Pavement Application (포스트텐션 콘크리트 포장 적용을 위한 실리카흄과 플라이 애시를 사용한 삼성분계 콘크리트의 특성)

  • Choi, Pan-Gil;Shim, Do-Sick;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • Post-tensioned concrete pavement(PTCP) was developed to built long-span concrete pavement(120 m span) and to maintain long-term service life(over 40 years) of concrete pavement. In the present study, research for high-durable concrete was conducted to utilize the advantage of PTCP construction method efficiently. First of all, 20% of fly ash(by binder weight) was replaced to control alkali silica reaction. Second, silica fume was applied to improve the water-permeability and early-age strength. Results of tests for mechanical properties, water-permeability resistance, and surface-scaling resistance of ternary blended cement concrete showed that the early-age strength was improved significantly with addition of silica fume. The water-permeability resistance was improved from "Low" to "Very Low"(ASTM C 1202). However, surface-scaling resistance was decreased with an increase of silica fume, therefore, content of silica fume should be kept in less than 5%(by binder weight) to assure field application considering durability. The results of air-void analysis showed that durability factors were improved since spacing factors were estimated as 250$\pm$15 micron in adjusted mixtures.

Change for Engineering Properties of Top Soils in the Wildfire Area (산불발생지역에서 상부토층의 공학적 특성 변화)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Kyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.225-233
    • /
    • 2007
  • The engineering properties of surface soils in natural terrain are changed due to wildfire. This change of engineering properties induced by wildfire is related to landslides occurrence. To investigate the change of soil properties caused by wildfire, the various soil tests are performed. The soil samples are obtained from the recently burned slopes of Yangyang area, Kangwon Province. The soil samples obtained from the burned slopes are classified into three types depending on the burning grade: the perfect burning grade, the intermediate burning grade, the non-burning grade. As the result of tests, the specific gravity and the dry unit weight of soils obtained from perfect and alternative burning grades are less than those of soils obtained from non-burning grade. It judges that an electronic force, ionic components and of soils are changed and organic matters in soils are burned by wildfire. The permeability of soil obtained from alternative burning grade is the lowest and that of soil obtained from perfect burning grade is the highest. The water-repellent layer is formed on soil surface by wildfire. The water-repellent layer is existed at the area of alternative turning grade, while the layer is not existed at the area of perfect burning grade. The water-repellent layer is collapsed in high temperature more than about $400^{\circ}C$.

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

An Evaluation of Smeared Zone Due to Mandrel Penetration (맨드렐 관입에 기인하는 스미어 존의 평가)

  • 박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.217-225
    • /
    • 2003
  • An experimental study was conducted to evaluate the smeared effect due to mandrel penetration into soft ground for a vertical drain installation. Laboratory tests were performed to investigate the formation of a smear zone, the variations of strength, and the consolidation characteristics in the disturbed zone using two types(CL at Yangsan site and OH at Pohang site) of soft clayey soils. The smear zone effect was evaluated focusing on mandrel shape, mandrel size, penetration speed, and ground condition. Based on laboratory test results, the diameter of the smear zone$(d_s)$ ranged from 3.08 and 3.92 times that of mandrel$(d_m)$. It was also found that the $(d_s/d_m)$ value of the circular shape of the mandrel is smaller than those of square and rectangular shapes. The value of $(d_s/d_m)$ decreased with larger mandrel size, lower penetration speed in the CL soil, and higher penetration speed in the OH soil. However, natural water content was minimally affected by $(d_s/d_m)$. Respectively, the coefficients of horizontal consolidation$(C_{hs})$ and horizontal Permeability$(K_s)$ of smear zone ranged from 0.81 to 0.87 times, and 0.73 to 0.83 times those of the undisturbed zone. Based on this study, the values of $C_{hs}, K_s$ and unconfined compressive strength$(q_{us})$ in the smear zone were the lowest at close vicinity of the mandrel and increased linearly with distance from the mandrel. Further, the $(q_{us})$ varied from 0.5 to 0.9 times that of the undisturbed zone strength.