Browse > Article

Thermo-hydraulic Modeling in Fault Zones  

Lee, Young-Min (Korea Institute of Geoscience and Mineral Resources)
Kim, Jong-Chan (Korea Institute of Geoscience and Mineral Resources)
Koo, Min-Ho (Kongju National University)
Keehm, Young-Seuk (Kongju National University)
Publication Information
Economic and Environmental Geology / v.42, no.6, 2009 , pp. 609-618 More about this Journal
Abstract
High permeable faults are important geological structures for fluid flow, energy, and solute transport. Therefore, high permeable faults play an important role in the formation of hydrothermal fluid (or hot spring), high heat flow, and hydrothermal ore deposits. We conducted 2-D coupled thermal and hydraulic modeling to examine thermohydraulic behavior in fault zones with various permeabilities and geometric conditions. The results indicate discharge temperature in fault zones increases with increasing fault permeability. In addition, discharge temperature in fault zones is linearly correlated with Peclet number ($R^2=0.98$). If Peclet number is greater than 1, discharge temperature in fault zones can be higher than $32^{\circ}C$. In this case, convection is dominant against conduction for the heat transfer in fault zones.
Keywords
fault; permeability; heat; temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fairley, J. P. (2009) Modeling fluid flow in a heterogeneous,fault-controlled hydrothermal system. Geofluids,v.9, p.153-166   DOI   ScienceOn
2 Harcouet-Menou, V., Guillou-Frottier, L., Bonneville, A.,Adler, P. M. and Mourzenko, V. (2009) Hydrothermalconvection in and around mineralized fault zones:Insights from two- and three-demensional numericalmodeling applied to the Ashanti belt, Ghana. Geofluids,v.9, p.116-137   DOI   ScienceOn
3 Simms, M. A. and Garven, G. (2004) Thermal convectionin faulted extensional sedimentary basins: theoreticalresults from finite-element modeling. Geofluids, v.4,p.109-130   DOI   ScienceOn
4 Smith, L. and Chapman, D. S. (1983) On the thermaleffects of groundwater flow, 1. Regional scale systems,Journal of Geophysical Research, v.88, p.593-608   DOI
5 Yang. J., Large, R. R. and Bull, S. W. (2004) Factors controllingfree thermal convection in faults in sedimentarybasins: implications for the formation of zincleadmineral deposits. Geofluids, v.4, p.237-247   DOI   ScienceOn
6 Lee, Y. and Deming, D. (1998) Evaluation of thermal conductivitytemperature corrections applied in terrestrialheat flow studies. Journal of Geophysical Research,v.103, p.2447-2454   DOI   ScienceOn
7 Bodvarsson, G. S., Benson, S. M. and Witherspoon, P. A.(1982) Theory of the development of geothermal systemscharged by vertical faults. Journal of GeophysicalResearch, v.87, p.9317-9328   DOI
8 Bodvarsson, G. S. and Tsang, C. F. (1982) Injection andthermal breakthrough in fractured geothermal reservoirs. Journal of Geophysical Research, v.87, p.1031-1048   DOI
9 Zhao, C., Hobbs, B. E., Ord, A., Kuhn, M., Muhlhaus, H.B. and Peng, S. (2006) Numerical simulation of double-diffusion driven convective flow and rock alterationin three-dimensional fluid-saturated geologicalfault zones. Computer Methods in Applied Mechanicsand Engineering, v.195, p.2816-2840   DOI   ScienceOn
10 Ehlers, T. A. and Chapman, D. S. (1999) Normal faultthermal regimes: conductive and hydrothermal heattransfer surrounding the Wasatch fault. Utah, Tectonophysics,v.312, p.217-234   DOI   ScienceOn
11 Deming, D. (2002) Introduction to hydrogeology. McGrawHill, New York, 468p
12 Samardzioska, T. and Popov, V. (2005) Numerical comparisonof the equivalent continuum, non-homogeneousand dual porosity models for flow and transportin fractured porous media. Advances in Water Resources, v.28, p.235-255   DOI   ScienceOn
13 Lopez, D. L. and Smith, L. (1996) Fluid flow in faultzones: Influence of hydraulic anisotropy and heterogeneityon the fluid flow and heat transfer regime.Water Resources Research, v.32, p.3227-3235   DOI   ScienceOn
14 Yang, J. (2006) Full e-D numerical simulation of hydrothermalfluid flow in faulted sedimentary basins:Example of the McArthur basin, northern Australia.Journal of Geochemical Exploration, v.89, p.440-444   DOI   ScienceOn
15 Bodvarsson, G. (1969) On the temperature of water flowingthrough fractures. Journal of Geophysical Research,v.74, p.1987-1992   DOI
16 Braun, J., Munroe, S. M. and Cox S. F. (2003) Transientfluid flow in and around fault. Geofluids, v. 3, p. 81-87   DOI   ScienceOn
17 Cook, P. G. (2003) A guide to regional groundwater flowin fractured rock aquifers. CSIRO, 108p
18 Zhao, C., Hobbs, B. E., Ord, A., Hornby, P., Muhlhaus, H.and Peng, S. (2008) Theoretical and numerical analysesof pore-fluid flow focused heat transfer aroundgeological faults and large cracks. Computers and Geotechnics,v.35, p.357-371   DOI   ScienceOn
19 Anderson, M. P. (2005) Heat as a ground water tracer. Ground Water, v.43, p.951-968   DOI   PUBMED   ScienceOn
20 Deming, D., Nunn, J. A. and Evans, D. G. (1990) Thermaleffects of compaction-driven groundwater flow fromoverthrust belts. Journal of Geophysical Research, v.95, p.6669-6683   DOI
21 Lopez, D. L. and Smith, L. (1995) Fluid flow in faultzones: Analysis of the interplay of convective circulationand topographically driven groundwater flow.Water Resources Research, v.31, p.1489-1503   DOI   ScienceOn