• 제목/요약/키워드: C metabolism

검색결과 1,812건 처리시간 0.031초

Role of plastidic glucose transporter in source metabolism of Arabidopsis

  • Lee, Youn-Hyung;Hong, Soon-Won;Lee, Jang-Wook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.9-21
    • /
    • 2005
  • To study the biochemical and physiological role of the plastidic glucose transporter (pGlcT) in carbohydrate metabolism, we characterized transgenic plants with mutations in the pGlcT gene (GT), gt-1 and gt-2, as well double mutants of GT and the maltose transporter (MEX1) and GT and the triose phosphate/phosphate translocator (TPT), GT and the cytosolic fructose-1,6-bisphosphatase gene (cFBP), and MEX1 and TPT, gt-1/mex2, gt-1/tpt-2, gt-1/cfbp-1, mex1-1/tpt-2, respectively. Compared to the wild type, all mutants except the gt-1/cfbp-1 mutant lines displayed higher starch accumulation and higher levels of maltose. Starch accumulation is due to a decrease in starch turnover, leading to an imbalance between the rates of synthesis and degradation. Sucrose levels of gt alleles were higher than those in wild-type plants during the light period, suggesting possible nightly supplementation via the maltose transport pathway to maintain proper carbohydrate partitioning in the plant leaves. The gt plants displayed less growth retardation than mex1-1 mutant and gt-1/mex2 double mutant displayed accumulativesevere growth retardation as compared to individual gt-1 and mex1-1 mutants, implying that the maltose transporter-mediated pathway is a major route for carbohydrate partitioning at night. The gt-1/tpt-2, mex1-1/tpt-2 and gt-1/cfbp-1 double mutants had retarded growth and low chlorophyll content to differing degrees, indicating that photosynthetic capacity had diminished. Interestingly, the gt-1/tpt-2 line displayed a glucose-insensitive phenotype and higher germination rates than wild type, suggesting its involvement not only in carbon partitioning, but also in the sugar signaling network of the pGlcT and TPT.

  • PDF

미나리(Oenanthe stolonifera DC.)를 이용한 Bentazon의 생물학적 분해 (Bioremediation Bentazon using Minari(Oenanthe stolonifera DC.) Plant.)

  • 신중두;이명선
    • 한국환경농학회지
    • /
    • 제16권3호
    • /
    • pp.207-211
    • /
    • 1997
  • Bentazon의 잔류를 제거하기 위한 미나리의 생물학적 정화능력을 검정코자 $^{14}C-Bentazon$의 흡수(uptake)와 이행(translocation), 그리고 분해(metabolism) 실험을 통하여 비교 실험하였다. 잎에 처리한지 2일 후에 있어서 $^{14}C$의 21%가 처리된 잎에서 관측되었고, 66%는 잎 표면을 물로 세척한 곳에 잔류하고 있었으며, 나머지 13%는 epicuticular wax층에서 발견되었다. Bentazon을 처리한 잎으로부터 $^{14}C$의 79%가 검출되었으며, 뿌리에는 9%만이 검출되어 잎으로부터 뿌리로의 이행은 매우 적었다. 처리한 2일후에 $^{14}C$의 methanol 추출물 분석에서 잎에 처리된 제초제의 60% 이상이 모든 식물체 부위에서 분해되었다. 본 실험에서 발견된 주요 bentazon의 분해물(Metabolites)은 bentazon이나 6-hydroxy 혹은 8-hydroxy bentazon 보다 덜 이온화(Polar)된 알려지지 않은 신 물질(unknown compound)이었다.

  • PDF

Clostridium acetobutylicum에서의 gene cloning

  • 이상엽
    • 미생물과산업
    • /
    • 제18권3호
    • /
    • pp.2-9
    • /
    • 1992
  • 이 논문에서는 대사공학에의 응용에 필수적이며 또한 그 자체의 기술이 학문적으로 상당히 관심을 끄는 C. acetobutylicum에서의 primary metabolic gene cloning에 대하여 정리해 보고자 한다. 우선 C. acetobutylicum의 primary metabolism과 일반적인 대사 조절에 대하여 간략히 살펴보고 이에 관여한 효소들과 gene cloning에 대하여 기술하고자 한다.

  • PDF

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

  • Baik, Myunggi;Nguyen, Trang Hoa;Jeong, Jin Young;Piao, Min Yu;Kang, Hyeok Joong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice

  • Jeon, Jang Su;Oh, Jeong-Ja;Kwak, Hui Chan;Yun, Hwi-yeol;Kim, Hyoung Chin;Kim, Young-Mi;Oh, Soo Jin;Kim, Sang Kyum
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.167-174
    • /
    • 2018
  • Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine ${\beta}-synthase$ and down-regulation of ${\gamma}-glutamylcysteine$ ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.

Triterpenoids from the Fruits of Cornus kousa Burg. as Human Acyl-CoA: Cholesterol Acyltransferase Inhibitors

  • Lee, Dae-Young;Jung, La-Koon;Lyu, Ha-Na;Jeong, Tae-Sook;Lee, Youn-Hyung;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.223-227
    • /
    • 2009
  • The fruits of Cornus kousa Burg. were extracted with 80% aqueous methanol (MeOH) and the concentrated extract was partitioned with ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$. From the EtOAc traction, 5 triterpenoids were isolated through repeated silica gel ($SiO_2$), octadecyl silica gel (ODS), and Sephadex LH-20 column chromatography (c.c.). These compounds were determined to be ursolic acid (1), corosolic acid (2), taraxasterol (3), betulinic acid (4), and betulinic aldehyde (5) on the basis of their spectroscopic data including electronic ionization mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, and nuclear magnetic resonance. This is the first reported isolation of these compounds from this plant. Also, compounds 1, 3, 4, and 5 show a relatively high inhibitory activity against human acyl-CoA: cholesterol acyltransferase-1 (hACAT-1) with inhibition values of $52.8{\pm}0.7$, $91.1{\pm}0.4$, $93.0{\pm}0.7$, and $96.2{\pm}0.2%$ at a concentration of $100{\mu}M$, respectively.

Effect of Cimetidine and Phenobarbital on Metabolite Kinetics of Omeprazole in Rats

  • Park Eun-Ja;Cho Hea-Young;Lee Yong-Bok
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1196-1202
    • /
    • 2005
  • Omeprazole (OMP) is a proton pump inhibitor used as an oral treatment for acid-related gastrointestinal disorders. In the liver, it is primarily metabolized by cytochrome P-450 (CYP450) isoenzymes such as CYP2C19 and CYP3A4. 5-Hyroxyomeprazole (5-OHOMP) and omeprazole sulfone (OMP-SFN) are the two major metabolites of OMP in human. Cimetidine (CMT) inhibits the breakdown of drugs metabolized by CYP450 and reduces, the clearance of coad-ministered drug resulted from both the CMT binding to CYP450 and the decreased hepatic blood flow due to CMT. Phenobarbital (PB) induces drug metabolism in laboratory animals and human. PB induction mainly involves mammalian CYP forms in gene families 2B and 3A. PB has been widely used as a prototype inducer for biochemical investigations of drug metabolism and the enzymes catalyzing this metabolism, as well as for genetic, pharmacological, and toxicological investigations. In order to investigate the influence of CMT and PB on the metabolite kinetics of OMP, we intravenously administered OMP (30 mg/kg) to rats intraperitoneally pretreated with normal saline (5 mL/kg), CMT (100 mg/kg) or PB (75 mg/kg) once a day for four days, and compared the pharmacokinetic parameters of OMP. The systemic clearance ($CL_{t}$) of OMP was significantly (p<0.05) decreased in CMT-pretreated rats and significantly (p<0.05) increased in PB-pretreated rats. These results indicate that CMT inhibits the OMP metabolism due to both decreased hepatic blood flow and inhibited enzyme activity of CYP2C19 and 3A4 and that PB increases the OMP metabolism due to stimulation of the liver blood flow and/or bile flow, due not to induction of the enzyme activity of CYP3A4.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Effects of Plantain (Plantago lanceolata L.) Herb and Heat Exposure on Plasma Glucose Metabolism in Sheep

  • Al-Mamun, M.;Tanaka, C.;Hanai, Y.;Tamura, Y.;Sano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.894-899
    • /
    • 2007
  • An experiment was conducted using a [6, 6-$^2H$]glucose isotope dilution method to determine the effects of plantain (Plantago lanceolata L.) on plasma glucose metabolism in sheep taken from a thermoneutral environment and exposed to a hot environment. The sheep were fed either mixed hay (MH) of orchardgrass (Dactylis glomerata L.) and reed canarygrass (Phalaris arundinacea L.) at a 60:40 ratio or MH and plantain (PL) at a 9:1 ratio in a crossover design for each 23-day period. In both dietary treatments the metabolizable energy (ME) and crude protein intake were designed to be isoenergetic and isoproteinous at around maintenance level. The sheep were taken from a thermoneutral environment ($20^{\circ}C$, 70% RH) and exposed to a hot environment ($28-30^{\circ}C$, 70% RH) for 5 days. The isotope dilution method using a single injection of [6, 6-$^2H$]glucose was performed on the $18^{th}$ day of the thermoneutral environment and on the $5^{th}$ day of heat exposure. Plasma glucose pool size was numerically lower (p = 0.26) during heat exposure on both dietary treatments, and numerically higher (p = 0.13) on the MH diet irrespective of environmental temperature. Plasma NEFA concentration (p = 0.01) and glucose turnover rate (p = 0.03) were decreased during heat exposure, but remained similar between diets. It could be concluded that, although no positive impact of plantain on glucose metabolism was found under the present experimental conditions (plantain constituted only 10% of basal diet), plantain herb is an alternative to MH for rearing sheep in both thermoneutral and hot environments.