• 제목/요약/키워드: C metabolism

검색결과 1,812건 처리시간 0.031초

사람의 장내세균에 의한 인삼사포닌의 대사 (Metabolism of Ginseng Saponins by Human Intestinal Bacteria)

  • 성종환;장곡천수부;송궁지지;내산아수;하주영;이문순;허재두
    • 생약학회지
    • /
    • 제26권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The metabolism of ginseng saponins by human intestinal bacteria was studied using human feces under anaerobic culture conditions. $Ginsenoside-Rb_1$, $-Rb_2$ and -Rc(protopanaxadiol type) were mainly metabolized to compound-K(C-K), $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyl]-20(S)-protopanaxadiol(compound-Y,\;C-Y)$, $20-O-[{\alpha}-L-arabinopyranosyl(1{\rightarrow}6)-{\beta}-{_D}-glucopyranosyll-20(S)-protopanaxadiol(ginsenosied-MC,{\;}MC)$, respectively, and $ginsenoside-Rg_1$ and -Re(protopanaxatriol type) to their aglycon, 20(S)-protopanaxatriol, though the pathway and rate of the metabolism were affected by fermentation medium. C-K was not decomposed any more, while C-Y and Mc were both gradually hydrolyzed to C-K.

  • PDF

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Changes of Cerebral Metabolism and the Related Factors during Cardiac Surgery

  • Park, Seok-Cheol
    • 대한의생명과학회지
    • /
    • 제8권3호
    • /
    • pp.143-154
    • /
    • 2002
  • The effect of cardiopulmonary bypass (CPB) on cerebral physiology during heart surgery remains incompletely understood. This study was carried out to investigate changes of cerebral metabolism and the association between the changes and clinical factors during heart surgery. Seventy adult patients (n=70) scheduled for elective cardiac surgery were participated in the present study. Middle cerebral artery blood flow velocity (V$_{MCA}$), cerebral arteriovenous oxygen content difference (C(a-v)O$_2$), cerebral oxygen extraction (COE), and modified cerebral metabolic rate for oxygen (MCMRO$_2$) were measured during six phases of the operation; Pre-CPB, CPB-10 min, Rewarm-1 (nasopharyngeal temperature 34$^{\circ}C$), Rewarm-2 (nasopharyngeal temperature 37$^{\circ}C$), CPB-off, and Post-OP (at skin closure after CPB-off). Each relationship of age, arterial blood gas parameters, or other variables to V$_{MCA}2$, C(a-v)O$_2$, COE, or MCMRO$_2$ was evaluated. V$_{MCA}$ increased (P<0.0001) whereas C(a-v)O$_2$ decreased (P<0.01) throughout the five phases of the operation compared to Pre-CPB value (control). COE diminished at CPB-10, Rewarm-1, and CPB-off (P<0.05) while MCMRO$_2$ reduced at CPB-10 and Rewarm-1 (P<0.05) compared to Pre-CPB value. Positive correlation was found between age and cerebral metabolic parameters (V$_{MCA}$, C(a-v)O$_2$, COE, or MCMRO$_2$) during CPB (range r=0.24 to 0.38, p<0.05). Four cerebral metabolic parameters had partially negative or positive correlation with arterial blood gas parameters and other variables (arterial blood pH, $O_2$ tension, $O_2$ content, $CO_2$ tension, blood pressure, blood flow, temperature, or hematocrit) during the operation. In conclusion, CPB led to marked alterations of cerebral metabolism and age, pH, and $CO_2$ tension profoundly influenced the changes during cardiac surgery.

  • PDF

기아상태에서 Ldh-C가 발현된 어류 조직의 젖산탈수소효소의 대사 (Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State)

  • 염정주;김규동
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.155-163
    • /
    • 2016
  • 젖산탈수소효소(Lactate dehydrogenase, EC 1.1.1.27, LDH) LDH-C의 기능을 확인하기 위해 liver-specific Ldh-C가 발현된 붕어(Carassius auratus)와 eye-specific Ldh-C가 발현된 파랑볼우럭(Lepomis macrochirus)을 기아 상태로 유지시킨 후(S) 조직들의 LDH 대사를 연구하였다. 기아 후 붕어 간조직의 LDH 활성이 크게 증가되었으며 LDH 비활성(units/mg)과 LDH/CS는 조직들에서 증가되어 혐기적 대사가 이루어짐을 확인하였다. 기아 후 LDH B4 동위효소가 골격근조직에서 감소되었고 심장조직에서 증가되었다. 눈과 뇌조직에 나타났던 LDH C4 동위효소는 liver-specific C4로 확인되었으며 기아 후에 없어지고, 눈조직은 C hybrid, 뇌조직은 A4, 간조직은 C hybrid와 C4 동위효소가 각각 증가되었다. 그러나 파랑볼우럭 조직에서 LDH 활성의 변화는 작았으나 눈조직에서 가장 크게 증가되었으며, 뇌조직은 LDH A4와 AC hybrid가 증가되었다. 피루브산 10 mM에 의해 기아 후 붕어 조직의 LDH 활성은 30.30-18.64%, 파랑볼우럭 조직의 LDH는 25-18.75% 남았으며, 붕어는 KmPYR 값이 증가되었다. 실험 결과 LDH liver-specific C 동위효소가 기아 중에 간, 뇌 및 눈조직에서 발현되었고, 기아 후 뇌조직에서 젖산의 대사가 우세하고, 붕어 LDH liver-specific C가 파랑볼우럭 LDH eye-specific C보다 영향을 더 받는 것으로 사료된다.

Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism

  • Jeong, Seung Min;Haigis, Marcia C.
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.750-758
    • /
    • 2015
  • Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.

Malonate Metabolism: Biochemistry, Molecular Biology, Physiology, and Industrial Application

  • Kim, Yu-Sam
    • BMB Reports
    • /
    • 제35권5호
    • /
    • pp.443-451
    • /
    • 2002
  • Malonate is a three-carbon dicarboxylic acid. It is well known as a competitive inhibitor of succinate dehydrogenase. It occurs naturally in biological systems, such as legumes and developing rat brains, which indicates that it may play an important role in symbiotic nitrogen metabolism and brain development. Recently, enzymes that are related to malonate metabolism were discovered and characterized. The genes that encode the enzymes were isolated, and the regulation of their expression was also studied. The mutant bacteria, in which the malonate-metabolizing gene was deleted, lost its primary function, symbiosis, between Rhizobium leguminosarium bv trifolii and clover. This suggests that malonate metabolism is essential in symbiotic nitrogen metabolism, at least in clover nodules. In addition to these, the genes matB and matC have been successfully used for generation of the industrial strain of Streptomyces for the production of antibiotics.

Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Cho, Jung-Il;Lee, Sichul;An, Gynheung;Jwa, Nam-Soo;Kim, Byung-Ryun;Cho, Young-Chan;Han, Seong-Sook;Bhoo, Seong-Hee;Lee, Youn-Hyung;Hong, Yeon-Kyu;Yi, Gihwan;Park, Dae-Sup;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.385-391
    • /
    • 2005
  • As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the $F_2$ segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the $F_2$ population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 $F_2$ plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.

식용식물자원으로부터 활성물질의 탐색 XXII. 순무(Brassica campestris ssp rapa) 뿌리로부터 인돌 화합물의 분리 및 hACAT 저해 활성 (Development of Biologically Active Compounds from Edible Plant Sources XXII. Isolation of Indoles from the Roots of Brassica campestris ssp rapa and their hACAT Inhibitory Activity)

  • 방면호;이대영;오영준;한민우;양혜정;정해곤;정태숙;이경태;최명숙;백남인
    • Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.65-69
    • /
    • 2008
  • 순무 뿌리로부터 80% MeOH 수용액으로 추출하고 이를 여과, 감압 농축하여 MeOH추출물을 얻었다. 이를 EtOAc 분획, n-BuOH분획, $H_2O$분획으로 나누었으며, EtOAc분획으로부터 silica gel 및 ODS column chromatography를 실시하여 3종의 화합물을 분리 정제하였다. 각각에 대하여 $^1H-NMR$, $^{13}C-NMR$, DEPT 스펙트럼 및 Mass 스펙트럼 데이터를 해석하여, caulilexin C (1), indoleacetonitrile (2) 및 arvelexin (3)로 구조를 결정하였다. 화합물 3는 순무에서는 이번에 처음 분리, 보고되었다. 또한 화합물 1, 2, 및 3은 100 ${\mu}g/ml$의 농도에서 hACATl의 활성을 각각 $54.6{\pm}6.0%$, $69.2{\pm}4.7%$$68.6{\pm}3.7%$ 억제하였고, hACAT2의 활성을 각각 $4.8{\pm}13.4%$, $45.6{\pm}4.8%$$39.5{\pm}4.3%$ 억제하였다.

Clostridium acetobutylicum의 대사와 발효 (Metabolism and Fermentation of Clostridium acetobutylicum)

  • 이상엽
    • KSBB Journal
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 1993
  • The acetone-butanol fermentation by C. acetobutylicum has gained increasing attention for the following reasons. First, the finite supply of petrochemical resources, combined with increasing concern over global environmental effects and the unstable nature of the price of petroleum has renewed interest in the development of fermentation technology that allows utilzation of biomass wastes for the production of alcohol. Second, it serves as excellent model system for understading the regulation and molecular biology of tightly regulated complex primary metabolism, and for applications of metabolic engineering. In this review various aspects of acetone-butanol fermentation by C. acetobutylicm including strain and fermentation characteristics, enzyme regulation, and solvent formation mechanism, and product recovery and summarized.

  • PDF

Metabolism of YH3945, a novel anticancer drug, in rats using 14C-labeled compound

  • Lee, Jae-Ick;Son, Jung-Hyun;Ahn, Byung-Nak;Lee, Bong-Yong;Kim, Dong-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.130.1-130.1
    • /
    • 2003
  • The metabolism of a novel anticancer agent 1-{3- [3-(4-Cyano -benzyl)-3H-imidazol-4-yl]-propyl }-3-(6-methoxy-pyridin-3-yl)-1-(2-trifluoromethyl-benzyl)-thiourea (YH3945) were investigated in the Sprague-Dawley rat after single oral and i.v. administration of [14C]-YH3945. Bile, feces, urine and plasma were collected and analyzed by an HPLC system equipped with multiple detectors. (omitted)

  • PDF