Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.2.155

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State  

Yum, Jung Joo (Department of Life Science, Cheongju University)
Kim, Gyu Dong (Department of Life Science, Cheongju University)
Publication Information
Journal of Life Science / v.26, no.2, 2016 , pp. 155-163 More about this Journal
Abstract
Metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) was studied to identify the function of LDH-C. Tissues of LDH liver-specific Ldh-C expressed Carassius auratus and eye-specific Ldh-C expressed Lepomis macrochirus after starvation were studied. LDH activity in liver tissue from C. auratus was increased after starvation. And LDH specific activity (units/mg) and LDH/CS were increased in tissues. It means the anaerobic metabolism was taking place in C. auratus after starvation. LDH B4 isozyme was decreased in skeletal muscle and increased in heart tissue. LDH C4 isozymes those showed in eye and brain tissues were identified as liver-specific C4 isozymes and disappeared after starvation. And C hybrid in eye, A4 isozyme in brain, and both C hybrid and C4 isozyme in liver tissue were increased, respectively. In L. macrochirus, the level of variation of LDH activities was low but greatly increased especially in eye tissue and LDH A4 and AC hybrid were increased in brain tissue. The LDH activities in tissues from C. auratus and L. macrochirus remained 30.30-18.64% and 25-18.75%, respectively, as a result of the inhibition by 10 mM of pyruvate. The KmPYR values of LDH in C. auratus were increased. As a result, LDH liver-specific C4 isozyme was expressed in liver, brain and eye tissues during starvation. It seems metabolism of lactate was predominant in brain tissue. After starvation, the liver-specific LDH-C was affected more than eye-specific LDH-C.
Keywords
Carassius auratus; KmPYR; lactate dehydrogenase; Lepomis macrochirus; starvation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Yum, J. J. 2008. Characterization of lactate dehydrogenase in Acanthogobius hasta. J. Life Sci. 18, 264-272.   DOI
2 Yum, J. J. and Ku, B. 2012. Biochemical properties of lactate dehydrogenase eye-specific C4 isozyme: Lepomis macrochirus and Micropterus salmoides. J. Life Sci. 22, 209-219.   DOI
3 Zakhartsev, M., Johansen, T., Pörtner, H. O. and Blust, R. 2004. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects. J. Exp. Biol. 207, 95-112.   DOI
4 Tylicki, A., Masztaleruk, D. and Strumilo, S. 2006. Differences in some properties of lactate dehydrogenase from muscles of the carp Cyprinus carpio and trout Salmo gairdneri. J. Evol. Biochem. Physiol. 42, 143-147.   DOI
5 Val, A. L. and de Almeida-Val, V. M. F. 1995. pp. 224. Aerobic versus anaerobic pathways. Fishes of the amazone and environment: physiological and biochemical aspect. Springer. New York.
6 Van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. and Tabak, H. F. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480.
7 Wang, Y., Wei, L., Wei, D., Li, X., Xu, L. and Wei, L. 2015. Testis-specific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances apika’s sprint-running capacity in hypoxic environment. Int. J. Environm. Res. 12, 9218-9236.
8 Wang, T., Hung, C. C. and Randall, D. J. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68, 223-251.   DOI
9 Wang, X., Perez, E., Liu, R., Yan, L. J., Mallet, R. T. and Yang, S. H. 2007. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 1132, 1-9.   DOI
10 Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-35.   DOI
11 Whitt, G. S. and Booth, G. M. 1970. Localization of lactate dehydrogenase activity in the cells of the fish (Xiphophorus helleri) eye. J. Exp. Zool. 174, 215-224.   DOI
12 Yeon, J. H. 2011. Charaterization of lactate dehydrogenase and expression of monocarboxylate transporters (MCT) 1, 2, 4 in liver from Carassius auratus. Doctoral dissertation. MS Thesis Cheongju Univ., Korea.
13 Park, E. M. and Yum, J. J. 2010. Purification and characterization of lactate dehydrogenase isozymes in Channa argus. J. Life Sci. 20, 260-268.   DOI
14 Park, E. M. and Yum, J. J. 2011. Activities of lactate dehydrogenase and ratios of lactate dehydrogenase/citrate synthase in tissue of Odontobutis interrupta. J. Ind. Sci. Cheongju Univ. Korea. 28, 15-24.
15 Park, S. Y. and Yum, J. J. 1993. Lactate dehydrogenase isozymes of Cypriniform and Perciform fishes: Expression of the Ldh-C gene. J. Ind. Sci. 265-277.
16 Sensabaugh, G. F. and Kaplan, N. O. 1972. A lactate dehydrogenase specific to the liver of gadoid fish. J. Biol. Chem. 247, 585-593.
17 Park, S. Y., Cho, S. K. and Yum, J. J. 2004. Characterization and evolutionary relationship of lactate dehydrogenase in liver of Lampetra japonica and liver-specific C4 isozyme in Gadus macrocephalus. J. Life Sci. 14, 708-715.   DOI
18 Quistorff, B., Secher, N. H. and Van Lieshout, J. J. 2008. Lactate fuels the human brain during exercise. FASEB J. 22, 3443-3449.   DOI
19 Scanlan, M. J., Simpson, A. J. and Old, L. J. 2004. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 4, 1.
20 Shaklee, J. B., Kepes, K. L. and Whitt, G. S. 1973. Specialized lactate dehydrogenase isozymes: the molecular and genetic basis for the unique eye and liver LDHs of teleost fishes. J. Exp. Zool. 185, 217-240.   DOI
21 Soengas, J. L., Strong, E. F., Fuentes, J., Veira, J. A. R. and Andrés, M. D. 1996. Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol. Biochem. 15, 491-511.   DOI
22 Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. and Sivridis, E. 2006. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632-637.   DOI
23 Markert, C. L., Shaklee, J. B. and Whitt, G. S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102-114.   DOI
24 Mukai, C. and Okuno, M. 2004. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540-547.   DOI
25 Metón, I., Fernández, F. and Baanante, I. V. 2003. Short-and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture 225, 99-107.   DOI
26 Miller, K. M., Schulze, A. D., Ginther, N., Li, S., Patterson, D. A., Farrell, A. P. and Hinch, S. G. 2009. Salmon spawning migration: metabolic shifts and environmental triggers. Comp. Biochem. Physiol. D. 4, 75-89.
27 Moyes, C. D., Buck, L. T., Hochachka, P. W. and Suarez, R. K. 1989. Oxidative properties of carp red and white muscle. J. Exp. Biol. 143, 321-331.
28 Navarro, I., and Gutie´rrez, J. 1995. Fasting and starvation. pp 393-434. vol 4. In: Hochachka, P. W. and Mommsen, T. P. (eds.), Biochemistry and molecular biology of fishes metabolic biochem. Elsevier. Amsterdam.
29 O′Brien, J., Kla, K. M., Hopkins, I. B., Malecki, E. A. and McKenna, M. C. 2007. Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem. Res. 32, 597-607.   DOI
30 Furné, M., Morales, A. E., Trenzado, C. E., García-Gallego, M., Hidalgo, M. C., Domezain, A. and Rus, A. S. 2012. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J. Comp. Physiol. B. 182, 63-76.   DOI
31 Furné, M., Sanz, A., García-Gallego, M., Hidalgo, M. C., Domezain, A., Domezain, J. and Morales, A. E. 2009. Metabolic organization of the sturgeon acipenser naccarii: a comparative study with rainbow trout Oncorhynchus mykiss. Aquaculture 289, 161-166.   DOI
32 Kim, J. B., Cho, S. K. and Yum, J. J. 2004. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi acclimated to acute increase of temperature for short-term period. J. Ind. Sci. 43-50.
33 Gillis, T. E. and Ballantyne, J. S. 1996. The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon. J. Fish Biol. 49, 1306-1316.   DOI
34 Goldberg, E., Eddy, E. M., Duan, C. and Odet, F. 2010. LDH C: The ultimate testis-specific gene. J. Androl. 31, 86-94.   DOI
35 Hinch, S. G., Cooke, S. J., Healey, M. C. and Farrell, A. T. 2005. Behavioural physiology of fish migrations: salmon as a model approach. Fish Physiol. 24, 239-295.   DOI
36 Koehler-Stec, E. M., Simpson, I. A., Vannucci, S. J., Landschulz, K. T. and Landschulz, W. H. 1998. Monocarboxylate transporter expression in mouse brain. Amer. J. Physiol. 275, 516-524.
37 Fantin, V. R. and Leder, P. 2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25, 4787-4797.   DOI
38 Koslowski, M., Türeci, Ö., Bell, C., Krause, P., Lehr, H. A., Brunner, J. and Sahin, U. 2002. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res. 62, 6750-6755.
39 Chatzifotis, S., Papadaki, M., Despoti, S., Roufidou, C. and Antonopoulou, E. 2011. Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (Dicentrarchus labrax). Aquaculture 316, 53-59.   DOI
40 Cho, S. K. and Yum, J. J. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Life Sci. 15, 71-79.   DOI
41 de Almeida-Val, V. M. F. and Val, A. L. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B. 105, 21-28.   DOI
42 Cho, S. K., Park, S. Y. and Yum, J. J. 1993. Purification and immunochemistry of lactate dehydrogenase in Lampetra japonica. Kor. J. Zool. 36, 505-513.
43 Coonrod, S., Vitale, A., Duan, C., Bristol-Gould, S., Herr, J. and Goldberg, E. 2006. Testis-Specific Lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J. Androl. 27, 502-509.   DOI
44 Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. NY Acad. Sci. 121, 404-427.
45 De Roos, R. 1994. Plasma ketone, glucose, lactate, and alanine levels in the vascular supply to and from the brain of the spiny dogfish shark (Squalus acanthias). J. Exp. Zool. 268, 354-363.   DOI
46 Dunn, J. F., Hochachka, P. W., Davison, W. and Guppy, M. 1983. Metabolic adjustments to diving and recovery in the African lungfish. Amer. J. Physiol. 245, 651-657.
47 Brooks, G. A., Brown, M. A., Butz, C. E., Sicurello, J. P. and Dubouchaud, H. 1999. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J. Appl. Physiol. 87, 1713-1718.   DOI
48 Baumgart, E., Fahimi, H. D., Stich, A. and Völkl, A. 1996. L-lactate dehydrogenase A-and AB isoforms are bona fide peroxisomal enzymes in rat liver evidence for involvement in intraperoxisomal NADH reoxidation. J. Biol. Chem. 271, 3846-3855.   DOI
49 Black, D. and Love, R. M. 1986. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J. Comp. Physiol. B. 156, 469-479.   DOI
50 Bond, C. E. 1996. Nervous and endocrine systems. pp. 241-258. In Bond, C. E. (eds.), Biology of fishes. Saunders College Publishing, FortWorth.
51 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
52 Brooks, G. A. 2009. Cell-cell and intracellular lactate shuttles. J. Physiol. 587, 5591-5600.   DOI