• Title/Summary/Keyword: C (HCV)

Search Result 175, Processing Time 0.027 seconds

Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase (C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구)

  • Lee, Chang-Ho;Lee, Seong-Wook
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • As a specific and effective therapeutic genetic material against hepatitis C virus (HCV) multiplication, HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was constructed. The allosteric ribozyme was composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nucleotide of HCV IRES. With real-time PCR analysis, the ribozyme was found to efficiently inhibit HCV replicon replication in cells. Of note, the allosteric ribozyme was shown to inhibit HCV replicon replication more efficiently than either HCV genome-targeting ribozyme or NS5B aptamer only. This allosteric ribozyme can be used as a lead genetic agent for the specific and effective suppression of HCV replication.

Distribution of HCV Genotypes in Chronic Korean HCV Patients

  • Lee, Kyung-Ok;Jeong, Su-Jin;Byun, Ji-Young;Shim, Ae-Sug;Seong, Hye-Soon;Kim, Kyung-Tae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • HCV is a single-stranded RNA virus and more than 1 million new cases are reported annually worldwide. The six major HCV genotypes and numerous subtypes vary in their geographic distribution. It is thought that genetic heterogeneity of HCV may account for some of the differences in disease outcome and response to treatment observed in HCV infected persons. In this study, we determined HCV genotypes among chronic Korean HCV patients and evaluated direct sequence PCR protocols developed. For the study, 232 chronic HCV patient sera were used. HCV RNA was extracted and two pairs of consensus PCR primers were selected in 5'UTR region for amplification of HCV RNA. Amplification products obtained from the HCV positive cases were subjected to automatic sequencing. Sequences were compared with those in GenBank by using the BLAST program. From this study, five HCV genotypes, 1b, 2a, 2b, 2c and 3a were found. HCV genotypes 4, 5 and 6 were not determined. HCV genotype 1b (53.9%, 125/232) and 2a (35.8%, 83/232) were most frequently found. This group was followed by 2b (3.9%, 9/232), 3a (3.4%, 8/232) and 2c (3.0%, 7/232). The data presented here suggest a complex distribution of HCV types and they were well correlated with other reports on Koreans and will be helpful for type-specific follow-up of Korean HCV patients. This study showed that 5'UTR direct sequence analysis is a sensitive and rapid method to identify HCV genotypes.

  • PDF

Hepatitis C Viral Infection in Children: Updated Review

  • El-Guindi, Mohamed A.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.2
    • /
    • pp.83-95
    • /
    • 2016
  • Hepatitis C virus (HCV) infection is a major medical challenge affecting around 200 million people worldwide. The main site of HCV replication is the hepatocytes of the liver. HCV is a positive enveloped RNA virus from the flaviviridae family. Six major HCV genotypes are implicated in the human infection. In developed countries the children are infected mainly through vertical transmission during deliveries, while in developing countries it is still due to horizontal transmission from adults. Minimal nonspecific and brief symptoms are initially found in approximately 15% of children. Acute and chronic HCV infection is diagnosed through the recognition of HCV RNA. The main objective for treatment of chronic HCV is to convert detected HCV viremia to below the detection limit. Children with chronic HCV infection are usually asymptomatic and rarely develop severe liver damage. Therefore, the benefits from current therapies, pegylated-Interferon plus ribavirin, must be weighed against their adverse effects. This combined treatment offers a 50-90% chance of clearing HCV infection according to several studies and on different HCV genotype. Recent direct acting antiviral (DAA) drugs which are well established for adults have not yet been approved for children and young adults below 18 years. The most important field for the prevention of HCV infection in children would be the prevention of perinatal and parenteral transmission. There are areas of focus for new lines of research in pediatric HCV-related disease that can be addressed in the near future.

Development of Hepatitis C Virus (HCV) Genome-Targeting Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase (C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 그 활성이 조절되는 HCV지놈 표적 Hammerhead 리보자임 개발)

  • Lee, Chang-Ho;Lee, Seong-Wook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.159-165
    • /
    • 2007
  • For the development of basic genetic materials for specific and effective therapeutic approach to suppress multiplication of hepatitis C virus (HCV), HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was developed. The ribozyme targeted most effectively to +382 nucleotide (nt) site of HCV IRES RNA. The allosteric ribozyme was designed to be composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nt of HCV IRES. Noticeably, we employed in vitro selection technology to identify the most appropriate communication module sequence which can induce ribozyme activity depending on the US5B protein. We demonstrated that the ribozyme was nonfunctional either in the absence of any proteins or in the presence of control bovine serum albumin. In sharp contrast, the allosteric ribozyme can induce activity of cleavage reaction with HCV IRES RNA in the presence of the HCV NS5B protein. This allosteric ribozyme can be used as lead compound for specific and effective anti-HCV agent, tool for highthroughput screening to isolate lead chemicals for HCV therapeutics, and ligand for biosensor system for HCV diagnosis.

A Case of Vertical Transmission of Hepatitis C Virus in an Infant of a Mother Who had Hepatitis C during Pregnancy (C형 간염 산모로부터 출생한 영아에서 C형 간염 Virus의 수직 전파 1례)

  • Oh, Sang-Hyun;Kim, Kuk-Hwan;Yang, Eun-Seok;Park, Sang-Kee;Moon, Kyung-Rye
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.2 no.1
    • /
    • pp.109-115
    • /
    • 1999
  • Hepatitis C virus (HCV) has been identified as an important cause of posttransfusion hepatitis, but vertical transmission of chronic infected HCV RNA positive mothers has been documented in some cases. The reports of the risk of perinatal infection have been widely varied in the literature. The authors experienced one case of vertical transmission of HCV in an infant of a mother who had hepatitis C during pregnancy. At admission, HCV RNA (+), Ig G anti HCV (+) and Ig M anti HCV (+) were found in the mother. Also at admission, HCV RNA (+), Ig G anti HCV (+), Ig M anti HCV (+), elevation of liver aminotransferase level and hepatosplenomegaly on ultrasonography were found in the baby on day 31. HCV RNA (-), Ig M anti HCV (-) and normal of liver aminotransferase level were noted on day 250 in the serum of the infant. We used reverse transcriptase polymerase chain reaction (RT-PCR) technique to find a very small amount of HCV RNA in the serum. All the findings suggest vertical transmission of HCV RNA from mother to infant during 3rd trimester of pregnancy.

  • PDF

The Interaction between HCV-Infected huh7.5 Cells and HCV-Specific T Cells (C형 간염 바이러스 감염 간암 세포주와 T 림프구의 상호작용에 대한 연구)

  • Kang, Hyojeung;Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.169-172
    • /
    • 2014
  • Recently, Hepatitis C virus (HCV) replication system has been established using human hepatoma cells (huh cell) and a variety of HCV clones. In this study, we established an infectious HCV replication system using huh7.5 cells and J6/JFH1 clone (genotype 2a). In addition, we investigated the antigen presentation capability of HCV-infected huh7.5 cells to HCV-specific T cells. Interestingly, HCV-infected huh7.5 cells were not capable of activating HCV-specific T cells. However, huh7.5 cells stimulated by exogenous HCV peptide were able to activate HCV-specific T cells, which was shown to produce TNF-${\alpha}$ and IFN-${\gamma}$. We further examined if HCV infection has an inhibitory effect on the expression of MHC class I molecule of huh7.5 cells. We found that HCV infection did not change the expression level of MHC class I molecule on huh7.5 cells.

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

Differential Expression of HCV Core Protein from Two Different Quasispecies

  • Yu, Kyung-Lee;You, Ji-Chang
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.151-155
    • /
    • 2009
  • Hepatitis C virus (HCV) has genetic diversity like most of RNA viruses. HCV major genotypes are classified into several subtypes which are further divided into quasispecies having, genetically different but closely related variants. The HCV core that is a nucleocapsid protein located at the amino terminus of the viral polyprotein is relatively a conserved protein among the HCV isolates and thus it has been one of plausible targets for anti-HCV drug development. However, different quasispecies of HCV core gene have also been found. In this study, we compared the expression level of core protein between two different quasispecies of HCV genotype 1b. Our data demonstrate that a little differences of amino acid sequence lead to substantial difference of expression level. It might be another important reason of different pathogenesis among HCV infected patients.

A Nucleic Acid Amplification Tests for Reliable HCV RNA Detection Method for Plasma-Derived Products (핵산증폭시험을 이용한 혈장분획물질에서 HCV RNA 검출)

  • Hong, Seung-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.293-298
    • /
    • 2008
  • HCV is transmitted via various plasma derived products. Current methods to detect hepatitis C virus (HCV) are based on its antibody detection in the donated blood and plasma. Viral contamination can potentially escape such detection during the window period of infection, when no antibody is present or the level of antibody is too low to detect. It is trying to application of nucleic acid amplification tests (NAT) for the direct detection of HCV. The objective of this study was to develop a reliable NAT for the HCV RNA detection from plasma-derived products. The most useful primers was selected for NAT among 5 sets of primers. We have also found that QIAamp viral RNA isolation kit was the most efficient for HCV RNA isolation. The highest sensitivity and specificity was appeared in $48^{\circ}C$ annealing temperature and 30 pmol of primers. With a spiking of HCV to albumin, immunoglobulins and coagulation factors, NAT can detect up to 100 IU/ml. Meanwhile, COBAS amplicor HCV 2.0 afforded a lower sensitivity in high concentrated intramuscular immunoglobulins to below 500 IU/ml. Our results suggested that NAT appears to be a highly sensitive and specific method for HCV RNA detection in plasma-derived products.

Real-World Clinical Efficacy and Tolerability of Direct-Acting Antivirals in Hepatitis C Monoinfection Compared to Hepatitis C/Human Immunodeficiency Virus Coinfection in a Community Care Setting

  • Gayam, Vijay;Hossain, Muhammad Rajib;Khalid, Mazin;Chakaraborty, Sandipan;Mukhtar, Osama;Dahal, Sumit;Mandal, Amrendra Kumar;Gill, Arshpal;Garlapati, Pavani;Ramakrishnaiah, Sreedevi;Mowyad, Khalid;Sherigar, Jagannath;Mansour, Mohammed;Mohanty, Smruti
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.694-703
    • /
    • 2018
  • Background/Aims: Limited data exist comparing the safety and efficacy of direct-acting antivirals (DAAs) in hepatitis C virus (HCV) monoinfected and HCV/human immunodeficiency virus (HIV) coinfected patients in the real-world clinic practice setting. Methods: All HCV monoinfected and HCV/HIV coinfected patients treated with DAAs between January 2014 and October 2017 in community clinic settings were retrospectively analyzed. Pretreatment baseline patient characteristics, treatment efficacy, factors affecting sustained virologic response at 12 weeks (SVR12) after treatment, and adverse reactions were compared between the groups. Results: A total of 327 patients were included in the study, of which 253 were HCV monoinfected, and 74 were HCV/HIV coinfected. There was a statistically significant difference observed in SVR12 when comparing HCV monoinfection and HCV/HIV coinfection (94% and 84%, respectively, p=0.005). However, there were no significant factors identified as a predictor of a reduced response. The most common adverse effect was fatigue (27%). No significant drug interaction was observed between DAA and antiretroviral therapy. None of the patients discontinued the treatment due to adverse events. Conclusions: In a real-world setting, DAA regimens have lower SVR12 in HCV/HIV coinfection than in HCV monoinfection. Further studies involving a higher number of HCV/HIV coinfected patients are needed to identify real predictors of a reduced response.