• Title/Summary/Keyword: C/N ratios

Search Result 631, Processing Time 0.035 seconds

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus mongolica in Mt. Worak National Park

  • Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • Weight loss and nutrient dynamics of Quercus mongolica leaf litter during decomposition were investigated from December 2005 through August 2008 in Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of Q. mongolica litter was 0.26. After 33 months decomposition, remaining weight of Q. mongolica litter was 49.3$\pm$4.4%. Initial C/N and C/P ratios of Q. mongolica litter were 43.3 and 2,032, respectively. C/N ratio in decomposing litter decreased rapidly from the beginning to nine months decomposition, and then showed more or less constant. C/P ratio increased to 2,407 after three months decomposition, and then decreased steadily thereafter. N and P concentration increased significantly during decomposition. N immobilization occurred from the beginning through 18 months decomposition, and mineralization occurred afterwards in decomposing litter. P immobilized significantly from fifteen months during decomposition. K concentration decreased rapidly from the beginning to six months decomposition. However it showed an increasing pattern during later stage of decomposition. Remaining K decreased rapidly during early stage of decomposition. There was no net K immobilization. Ca concentration increased from the beginning to twelve months decomposition, and then decreased rapidly till twenty one months elapsed. However, it increased again thereafter. Ca mineralization occurred from fifteen months. Mg concentration increased during decomposition. There was no Mg immobilization during litter decomposition. After 33 months decomposition, remaining N, P, K, Ca and Mg in Q. mongolica litter were 79.2, 110.9, 36.2, 52.7 and 74.4%, respectively.

Study on Optimum Conditions for the Composting of Industrial Wastewater Sludge (공단 폐수 슬러지의 퇴비화 최적조건)

  • Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Su
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • To study the optimum conditions of composting with industrial wastewater sludge, the variations of temperature and $CO_2$ generation amount during the composting periods were investigated. The conditions were that industrial wastewater added to bulking agents such as sawdust and rice hull was used, and differently treated with microorganism seeding or not, initial C/N ratios, air flow rate and initial moisture contents, respectively. The results were summarized as follows : Seeding 5% of microorganism was higher the temperature than not seeding. And using sawdust as bulking agents, and adjusting 30~40 of Initial C/N ratio, 200ml/l.min. of k flow rate and 67~68% moisture contents were higher the temperature than any other conditions. Seeding 5% of microorganisms was higher $CO_2$ generation amount than not seeding. And that was much in the order of 7~40, 30~34 and 22~23 of initial C/N ratio. Judging from the results, it should be considered that the optimum conditions in the composting of industrial wastewater sludge were seeding of 5% microorganisms, and adjusting 30~34 of Initial C/N ratio, 200ml/l min. of air flow rate and 67~68% of Intitial moisture contents. The contents of inorganic matters and C/N ratio during the composting periods at optimum condition were a little Increased. and heavy metals contents after composting were lower than standard for fortllizer.

  • PDF

The study of Efficient Treatment Conditions on the Composting of Foodwaste (음식쓰레기의 퇴비화공정의 적정운전조건 검토)

  • Kang, Chang-Min;Kim, Byoung-Man;Jeoung, Il-hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • The purpose of this study was to investigate the optical conditions to satisfied the salt concentration of 1% below of compost produced by using the material of foodwaste and sawdust. We changed the mixing ratios of foodwaste : sawdust from 7:3 to 3:7 and the ratios of foodwaste : rice hull from 6.5:3.5 to 4:6. We analyzed C/N, pH, temperature, water content, volatile solid, salt, heavy metals to check the degree of composting. The running conditions of composting were $80{\sim}133{\ell}/min{\cdot}m^{3}$ of air flow rate, 1:4 of time interval(on:off) and 7days of turning interval. Running times were 28days. The optical mixing ratio of foodwaste : sawdust was 6:4 when we compared many factors. Especially when the mixing ratios of foodwaste : sawdust or foodwaste : sawdust were 7:3 or 6:4, the composting was not accomplished by the reason of low C/N. The concentrations of heavy metal were sufficiently low to satisfied the satandard of organic compost. The salt concentration was 0.43%-0.46% that was the half of initial concentration. The rice hull was the good in pore rate and 통기성, and so it can used alternative material.

  • PDF

Studies on the Modelling of Controlled Environment in Leaf Vegetable Crops (엽채류의 환경제어 모델 연구 I. 야온 및 양액내 $\textrm{NO}_3\;^-$: $\textrm{NH}_4\;^+$비가 백경채 및 탑채의 생육에 미치는 영향)

  • 박권우;신영주;이용범
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1992
  • The effects of different night temperatures and NO$_3$$^{[-10]}$ : NH$_4$$^{+}$ ratios in nutrient solution on the growth and quality of Chinese white cabbage(B. chinensis L. var. chinensis) and Chinese flat cabbage(B. chinensis L. var. rosularis) were studied. The results were summarized as follows. 1. Fresh weight was increased higher in night temperature 15$^{\circ}C$ than 5, 1$0^{\circ}C$, but content of vitamin C and dry weight ratio were increased as night temperature was lower. 2, The growth of Chinese white cabbage and Chinese flat cabbage was bad extremely in NO$_3$$^{[-10]}$ : NH$_4$$^{+}$(0 : 8), and the others were little different 3. In nutrient solution, the higher NO$_3$$^{[-10]}$ -N concentration was, the more content of vitamin C, and the higher NH$_4$$^{+}$-N concentration was, the more dry weight ratio.ratio.

  • PDF

Physico-chemical Characteristics and Utilization of Raw Materials for Mushroom Substrates (버섯 병재배 배지재료의 이화학성과 활용)

  • Cheong, Jong-Chun;Jhune, Chang-Sung;Lee, Chan-Jung;Oh, Jin-A
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • To provide a basic information on the chemical concentrations of different raw materials used in mushroom cultivation, the raw materials were collected from 13 Flammulina velutipes, 14 Pleurotus eryngii, and 8 P. ostreatus farms and analyzed to calculate moisture contents, pH, total carbon(T-C), total nitrate(T-N), total phosphate(T-P) and 13 different cations. In our results, the C : N ratios of cotton seed meal, beet pulp, and corn-cob were 6~17, 12~29 and 56~127, respectively. Depending on the companies which process these materials, the range of C:N ratio of soybean curd residue was approximately either 8~9 or 14~17 with wider range of C : N ratio of the raw materials imported from other countries without the detection of heavy metals. In this study, the formula was provided to calculate the composition of mixed media for mushroom cultivation based on the ingredient chart of different raw materials.

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구)

  • Lee, Yeon-Jung;Jeong, Byung-Kwan;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-78
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an additive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level assuming $C^*$ efficiency equals $I_{sp}$ efficiency.

Influence of NO3-:NH4+ Ratios in Fertilizer Solution on Growth and Yield of Hot Pepper (Capsicum annuum L.) in Pot Cultivation (배지경 포트재배에서 비료용액의 NO3-:NH4+ 비율이 고추의 생장 및 수량에 미치는 영향)

  • Yi, Ho Jin;Choi, Jong Myung;Jang, Sung Wan;Jung, Suk Ki
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • This research was conducted to evaluate the influence of $NO_3{^-}:NH_4{^+}$ ratios in fertilizer solution on the vegetative growth and fruit yield of hot pepper (Capsicum annuum L.) through pot cultivation. The Hoaglad's solution was modified to contain various $NO_3{^-}:NH_4{^+}$ ratios such as 100:0 (A), 73:37 (B), 50:50 (C), 27:73 (D), 0:100 (E), and no nitrogen (F). Plants were transplanted into root substrates and the modified solutions were applied as plant needed in plastic house. There were no statistical significances among the treatments from A through D in the fresh and dry weights, and number of leaves 31 days after transplanting, but elevation of $NH_4{^+}$ ratios in the solution decreased the fresh fruit weight 62 days after transplanting with statistical differences. In the results of inorganic element analysis based on the dry weight of fully expanded mature leaves, N and P contents as well as micro cations such as Fe, Mn, Zn, and Cu increased as $NH_4{^+}$ ratios were elevated 62 days after transplanting. However, those of macro cations such as K, Ca, and Mg resulted in decreasing tendency. The elevation of $NH_4{^+}$ ratios in fertilizer solution resulted in the increase of EC and total N concentrations ($NO_3{^-}+NH_4{^+}$), but this decreased the pH as well as Ca and Mg concentrations in soil solution 62 days after transplanting. The K concentration in soil solution was the highest in the treatments of C and followed by D, B, E, and A. The above results indicate that the proper $NO_3{^-}:NH_4{^+}$ ratio in the nutrient solution is 73:27 (B) or 100:0 (A) and the B solution is proper for the vegetative growth and that of A is proper for reproductive growth stage.

Effect of Different Silages for TMR on In vitro Rumen Simulative Fermentation

  • Mbiriri, David Tinotenda;Oh, Seong Jin;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • In this study, the in vitro fermentation parameters of whole crop barley (WCBS-TMR) and Italian ryegrass (IRGS-TMR) silage total mixed rations were compared. A rice straw based diet (RSBD), which was a mixture of rice straw and concentrate (60:40), was used as the control. The feeds were incubated in buffered rumen fluid for 3, 6, 9, 12, 24, 48 and 72 hours at $39^{\circ}C$. At the end of each incubation period the following parameters were determined, total gas, pH, ammonia nitrogen ($NH_3$-N), volatile fatty acids (VFA) and then the acetate to propionate ratio (A/P) was calculated. The dietary treatments did not affect (p>0.05) the overall production of $NH_3$-N, gas, total VFA and all the individual VFA, with the exception of n-butyrate (p<0.001). The treatment diets significantly affected the A/P ratio (p<0.01). The control diet resulted in the lowest A/P ratios, followed by WCBS-TMR and lastly IRGS-TMR had the highest ratios. Gas production was not different between treatments, suggesting a probable similar level of digestibility when treatments are fed to animals. It can therefore be concluded from the present study that WCBS and IRGS are of almost an equivalent nutritional value when incubated in a TMR form. WCBS-TMR however resulted in lower A/P ratios than IRGS-TMR, which is indicative of a more energy efficient diet.

Characteristics of Chemical Composition in Carbonaceous Aerosol of PM2.5 Collected at Smoke from Coal Combustion (석탄 연소 시 발생되는 PM2.5 내 탄소 에어로졸의 화학 조성 연구)

  • Chang, Yu Woon;Joo, Hung Soo;Park, Ki Hong;Lee, Ji Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.265-276
    • /
    • 2017
  • The $PM_{2.5}$ samples were obtained from coal combustion with the four different combustion temperatures (550, 700, 900 and $1100^{\circ}C$) to understand chemical composition in carbonaceous aerosol. OC concentration was the highest when the combustion temperature was $550^{\circ}C$, while, the highest concentration for EC was shown at $700^{\circ}C$ of the coal combustion temperature. However, OC concentrations were very low and EC was not detected when the temperature was over $900^{\circ}C$. It indicates complete combustion was achieved when the combustion temperature was over $900^{\circ}C$. For six groups of organic compounds, n-alkanes and n-alkanoic acids were predominant at all of the combustion temperature in smoke of coal combustion, while, PAHs was only detected at $550^{\circ}C$. The diagnostic ratios of PAHs calculated in this study were 0.59 for Fluoranthene/(Fluoranthene+Pyrene), reflecting the characteristics of coal combustion. The Carbon number Preference Index (CPI) values of n-alkanes which ranged from 0.9 to 1.3 also showed the characteristics of coal combustion.