• Title/Summary/Keyword: Byunsan Peninsula

Search Result 5, Processing Time 0.017 seconds

High Loading for Air Pollution in the Byunsan Peninsula of Korea by an Interplay of the Saemangeum Project and Winter Monsoon

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • The wintertime high loading for atmospheric pollutants is certainly expected in the Byunsan Peninsula of Korea because of a great-scale reclamation project having construction of 33 km tidal sea dike impounding an area of over 40,000 ha and long-range transport. The goal of this study is to trace the origin of this wintertime burden for ambient particulate matter (hereafter called "PM") in the Byunsan Peninsula of Korea. The size-segregated (i.e., cutoff size from 0.01 ${\mu}m$ to 4.7 ${\mu}m$) PM sampling was conducted at a ground-based site of Byunsan Peninsula located in the west coast of Korean Peninsula during the height of dike constructing. Data archived in this study are the mass concentrations of ionic, elemental, and carbonic components in size-fractioned PM. The elemental mass of individual submicrometer particles was also analyzed. The sum of 5-source (i.e., elemental carbon, organic materials, inorganic secondary pollutants, crustal matter, and sea-salts) concentrations shows the bimodal distribution (major and minor peaks formed around $D_p$, 0.65 ${\mu}m$ and $D_p$, 4.7 ${\mu}m$, respectively) by border with 0.19 ${\mu}m$ of cutoff size. The concentrations of EC in $PM_{1.1-0.01}$ in winter and spring times were 4.62 ${\mu}g\;m^{-3}$ and 3.74 ${\mu}g\;m^{-3}$, respectively. Elemental masses of submicron individual particles are classified into two groups, i.e., the major elements (Cl, Al, Si, S, and P) and the minor trace elements. Cluster analysis differentiated the elements in submicron individual particles into 4-cluster. Among them, three clusters are in agreement with the major (Al, Si, S, and P), minor (Fe, Ca, and K), and trace compositions of coal burning. Meanwhile, Cl classified as an independent cluster has different source profile which was mainly due to the Saemangeum seawall project. Some highly toxic elements (e.g., Cr, Mn, and As (and/or Pb)) were also detected in some part of submicron individual PM. As a consequence, the combination of the Saemangeum project and winter monsoon played a considerable part in the double aggravation of wintertime air pollution in the Byunsan Peninsular.

Geochemical Relationship Between Shore Sediments and Near Terrestrial geology in Byunsan-Taean Area, West Coast of Korea (한반도 서해안 변산-태안지역 연안 퇴적물과 육상지질과의 지화학적 상관관계)

  • Seo, Kyoung Won;Chi, Jeong Mahn;Jang, Yoon Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 1998
  • A geochemical study was carried out to define how marine shore sediments are related to their terrestrial source rocks in the region of Taean and Byunsan Peninsula, western Korea. The lithology of the coastal part of the study area is composed of Pre-Cambrian granite gneiss, schist, Jurassic terrestrial sedimentary rocks, and Cretaceous plutonic intrusives. Shore sediments are transported from three drainage tributaries. The sediments consist of quatrz with clay minerals, such as illite, kaolinite, smectite, chlorite. Heavy minerals include hematite, ilmenite, rare amount of zircon and apatite. Compared to those in coastal rocks, amount of heavy minerals in the sediments is considerably low. The low content of heavy minerals is thought to be attributed to the heavy mineral detainment in the river beds and influences of tidal currents which cause heavy minerals to accumulate in specific spots. Chemical composition of the major and trace elements, trace elements, and REE chondrite normalized pattern suggest that shore sediments transported from the corresponding drainage tributary show close mineralogical and geochemical relationships with the source rocks distributed in the Taean and Byunsan Peninsula.

  • PDF

Chemically Aged Asian Dust Particles Proven by Traditional Spot Test and the Most Advanced micro-PIXE

  • Ma, Chang-Jin;Tohno, Susumu;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.114-123
    • /
    • 2016
  • A change in chemical compositions of Asian dust (AD) particles can dramatically alter their optical properties, cloud-forming properties, and health effects. The present study was undertaken to evaluate this aging of AD particles by means of two complementary methods (i.e., the traditional spot test and the most advanced micro-PIXE analytical technique) for single particle analysis. Size-classified particles were sampled at the rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD event and non-AD period in 2004. Sulfate was principally enriched on the particles in the size range of $7.65-10.85{\mu}m$ collected during AD event. The average number fraction of coarse particles ($>2.05{\mu}m$) containing chloride was 16.2% during AD event. Relatively low particles containing nitrate compared to those containing sulfate and chloride were found in AD event. Micro-PIXE elemental maps indicated that a large number of AD particles were internally mixed with man-made zinc. The highest peaks of EC and OC concentrations were appeared at $0.01-0.43{\mu}m$ particle aerodynamic diameter. High EC concentration in $PM_1$ was might be caused by the Saemangeum Seawall Project that was being conducted during our field measurement.

Chemical Properties of the Individual Asian Dust Particles Clarified by Micro-PIXE Analytical System

  • Ma, Chang-Jin;Kang, Gong-Unn;Kasahara, Mikio;Tohno, Susumu
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.154-161
    • /
    • 2014
  • The present study was undertaken to evaluate the chemical characteristics of Asian dust (hereafter called "AD") particles with the aid of the most advanced micro-PIXE (Particle-induced X-ray emission) analytical technique. To this end, size-selected particles were sampled on a rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD and non-AD periods in 2004. The coarse particle (> $2{\mu}m$) number density during an AD event were 170 times higher than those of the non-AD counterpart. The average net-count of silica in individual particles collected on AD event was roughly 11 times higher than that of non-AD counterpart. The X-ray net-counts of trace elements (Zn, Co, Mn, and V) were also considerably high in AD relative to the non-AD day. Particle classification based on the inter ratio analysis of elemental net-count suggests that a large portion of the coarse particles collected during AD event underwent chemical transformation to a certain degree. The visual interpretation of micro-PIXE elemental maps and elemental localization data in and/or on individual AD particles clarified the internal mixture of AD particles with sea-salt and artificial metallic particles.

Vegetation Structure of the Ridge Area of Naesosa in the Byunsan Peninsula National Park (변산반도국립공원 내소사 지역의 능선부 식생구조)

  • Kim, Bong-Gyu;Um, Tae-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • To investigate the vegetation structure of mountain ridges ranging from Sebong to Gwaneumbong 23 plots($400m^2$) set up with random sampling method were surveyed. Two groups of Pinus densiflora community, Pinus densiflora-Quercus variabilis-Quercus serrata community were classified by cluster analysis. Pinus densiflora, Quercus variabilis, Quercus serrata, Carpinus laxiflora, and Quecus mongolica were found as a mostly dominant woody plant species in the ridge area from Sebong to Gwaneumbong. In the future, the importance percentage of Pinus densiflora might be decreased, but those of Quercus variabilis, Quercus serrata, Carpinus laxiflora, and Quecus mongolica might be increased. High positive correlations were proved between Quercus variabilis and Fraxinus sieboldiana, Acer palmatum and Ilex macropoda, Cornus kousa and Platycarya strobilacea, Sorbus alnifolia and Carpinus laxiflora, and relatively weak negative correlations were proved between Pinus densiflora and Carpinus laxiflora, Fraxinus sieboldiana and Carpinus laxiflor, Quecus mongolica and Sorbus alnifolia, Ilex macropoda and Sorbus alnifolia. Species diversity index(H') of investigated groups was ranged $0.665{\sim}1.169$.