• Title/Summary/Keyword: Butadiene

Search Result 570, Processing Time 0.019 seconds

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex (카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구)

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Polymerization of carboxylated styrene-butadiene latex takes longer time than that of acrylic emulsion due to delocalization of radical in butadiene unit having conjugated double bond. A latex stability is the most important properties owing to use intact without separating polymer from base latex. For reducing polymerization time without decreasing any properties of latex, carbon tetra-chloride which has been used as the most popular chain transfer agent was replaced to combination of tert-dodecylmercaptane and ${\alpha}$-methylstyrene dimer. The replacement yielded reducement or 2 hr in polymerization time. In the increment step, charge amount of acrylic acid was limited to 0.3 part to restrain viscosity enhancement. Just after initial step, addition of 0.1 part acrylamide prevent polymer chain from diffusing between two region followed by giving hardness and final good adhesive force to latex particles.

Linear viscoelastic behavior of acrylonitrile-butadiene-styrene(ABS) polymers in the melt: Interpretation of data with a linear viscoelastic model of matrix/core-shell modifier polymer blends

  • Park, Joong-Hwan;Ryu, Jong-Hoon;Kim, Sang-Yong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.135-141
    • /
    • 2000
  • The linear viscoelastic behavior of acrylonitrile-butadiene-styrene (ABS) polymers with different rubber content has been investigated in the frame of a linear viscoelastic model, which takes into account the inter-connectivity of the dispersed rubber particles. The model developed in our previous work has been shown to properly predict the low frequency plateau for the storage modulus, which is generally observed in polymer blends containing core-shell-type impact modifiers. In the present study, further experiments have been carried out on ABS polymers with different rubber content to verify the validity of our linear viscoelastic model. It has been found that our model describes quite properly the rheological behavior of ABS polymers with different rubber content, especially at low frequencies. The experimental data confirm that our model describes the rheological properties of rubber-modified thermoplastic polymers with strong adhesion at the particle/matrix interface more accurately than the Palierne model.

  • PDF

Assessment of Flame Retardancy for Acrylonitrile Butadiene Styrene Containing Metal Powder and Flame Retardant (금속분말-난연제 함유 ABS의 난연 특성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.30-35
    • /
    • 2007
  • The flame retardancies by the addition of metal powder and flame retardant were evaluated to present as the fundamental data to decrease the fire hazard of polymers and life losses by suffocation and poisoning. For this study, the experiments of flame retardancy were conducted as follows : weight loss rate using thermogravimetric analysis, the measurement of the limiting oxygen index(LOI) and char yield. And smoke mass concentration and CO yield were measured. Acrylonitrile butadiene styrene containing metal powder and flame retardant reduced weight loss rate and increased LOI and char yield with the decreased smoke mass concentration and CO yield. It was found that the most effective complex was tricresyl phosphate-Mo complex.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan;Li, Xiangxu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

Kinetic Study on the Thermal Degradation of Poly(Methyl Methacrylate) and Poly(Acrylonitrile Butadiene Styrene) Mixtures (Poly(methyl methacrylate)와 Poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구)

  • Moon, Deok-Ju;Kim, Dong-Keun;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • The thermal degradation of Poly(methyl methacrylate) (PMMA) and poly(acrylonitrile butadiene styrene)(ABS) terpolymer as well as their mixtures were carried out using the thermogravimetry and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 200 to $300^{\circ}C$ The values of activation energies of thermal degradation determined by TG and DSC in the various PMMA/ABS mixtures were $34{\sim}58Kcal/mol,\;35{\sim}54Kcal/mol$ in the stream of nitrogen. The values of activation energy of ABS20% mixture was appeared high in camparison with addition rule. According to increasing the composition of ABS, the temperatures of glass transition and initial decomposition temperature were increased. PMMA/ABS mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Supercapacitive Properties of Polyaniline Electrode Electrodeposited on Carbon Nanotube/Acetonitrile-Butadiene Rubber as a Flexible Current Collector

  • Park, Jee-Hye;Kim, Sang-Hern;Ko, Jang-Myoun;Lee, Young-Gi;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.211-215
    • /
    • 2011
  • Flexible sheets consisting of acrylonitrile-butadiene rubber (NBR) and carbon nanotube (CNT) are newly prepared varying the composition (CNT 20-25 wt.%) for use as a current collector of supercapacitor electrodes. The as-prepared CNT/NBR is electrodeposited with aniline using potentiodynamic cyclic voltammetry to yield a polyaniline (PANI)/CNT/NBR composite electrode. It is confirmed that the electrical conductivity of CNT/NBR current collector can be enhanced as the content of CNT increases. Cyclic voltammetry result shows that the sample of PANI/CNT(25 wt.%)/NBR composite achieves a maximum specific capacitance ($134.9\;F\;g^{-1}$) at $5\;mV\;s^{-1}$. Such supercapacitor application is possibly originated from the synergistic effects consisting of higher polarity of nitrile groups in NBR, conducting pathway of CNT, and electroactive property of PANI.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black Content (카본 함량에 따른 니트릴 부타디엔 고무의 음향 특성)

  • Jung Kyungil;Yoon Suk Wang;Cho Kuk Young;Park Jung-ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.377-380
    • /
    • 2002
  • Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black ContentAcoustic and mechanical properties of Nitrile Butadiene Rubbers (NBR) with the variation of the carbon black content were investigated. NBR where the acrylonitrile content is $33\%$ based on the mole percent has been prepared with fixed sulfur content for vulcanization. Acoustic measurement of the prepared rubbers were peformed in the frequency region of $300\;\~\;1000\;kHz$. Their mechanical properties such as density, hardness were also measured. Increase of the carbon black content in the rubber resulted in enhancement of the mechanical property and linear increase of the sound speed as function of the carbon black content. Interestingly, attenuation of the sound speed was only affected by the existence of the carbon black and not by the amount of carbon black in the experiment range of this article. In this study, it was found that the amount of carbon black content in the NBR was correlated with the acoustic properties and can be estimated nondestructively by the measurement of the specific acoustic property.

  • PDF

An Investigation on the Extraction and Quantitation of a Hexavalent Chromium in Acrylonitrile Butadiene Styrene Copolymer (ABS) and Printed Circuit Board (PCB) by Ion Chromatography Coupled with Inductively Coupled Plasma Atomic Emission Spectrometry

  • Nam, Sang-Ho;Kim, Yu-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1967-1971
    • /
    • 2012
  • A hexavalent chromium (Cr (VI)) is one of the hazardous substances regulated by the RoHS. The determination of Cr (VI) in various polymers and printed circuit board (PCB) has been very important. In this study, the three different analytical methods were investigated for the determination of a hexavalent chromium in Acrylonitrile Butadiene Styrene copolymer (ABS) and PCB. The results by three analytical methods were obtained and compared. An analytical method by UV-Visible spectrometer has been generally used for the determination of Cr (VI) in a sample, but a hexavalent chromium should complex with diphenylcarbazide for the detection in the method. The complexation did make an adverse effect on the quantitative analysis of Cr (VI) in ABS. The analytical method using diphenylcarbazide was also not applicable to printed circuit board (PCB) because PCB contained lots of irons. The irons interfered with the analysis of hexavalent chromium because those also could complex with diphenylcarbazide. In this study, hexavalent chromiums in PCB have been separated by ion chromatography (IC), then directly and selectively detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). The quantity of Cr (VI) in PCB was 0.1 mg/kg.