DOI QR코드

DOI QR Code

Supercapacitive Properties of Polyaniline Electrode Electrodeposited on Carbon Nanotube/Acetonitrile-Butadiene Rubber as a Flexible Current Collector

  • Park, Jee-Hye (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Sang-Hern (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Ko, Jang-Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang-Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
  • Received : 2011.12.08
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

Flexible sheets consisting of acrylonitrile-butadiene rubber (NBR) and carbon nanotube (CNT) are newly prepared varying the composition (CNT 20-25 wt.%) for use as a current collector of supercapacitor electrodes. The as-prepared CNT/NBR is electrodeposited with aniline using potentiodynamic cyclic voltammetry to yield a polyaniline (PANI)/CNT/NBR composite electrode. It is confirmed that the electrical conductivity of CNT/NBR current collector can be enhanced as the content of CNT increases. Cyclic voltammetry result shows that the sample of PANI/CNT(25 wt.%)/NBR composite achieves a maximum specific capacitance ($134.9\;F\;g^{-1}$) at $5\;mV\;s^{-1}$. Such supercapacitor application is possibly originated from the synergistic effects consisting of higher polarity of nitrile groups in NBR, conducting pathway of CNT, and electroactive property of PANI.

Keywords

References

  1. G. G. Wallace, T. E. Campbell and P. C. Innis, Fibers Polym., 8, 135 (2007). https://doi.org/10.1007/BF02875782
  2. S. Coyle, Y. Wu, K.-T. Lau, D. de Rossi, G. G. Wallace and D. Diamond, Mater. Res. Bull., 32, 434 (2007). https://doi.org/10.1557/mrs2007.67
  3. B. J. Munro, T. E. Campbell, G. G. Wallace and J. R. Steele, Sens. Actuators B: Chem., 131, 541 (2008). https://doi.org/10.1016/j.snb.2007.12.041
  4. D. Morris, S. Coyle, Y. Wu, K.-T. Lau, G. G. Wallace and D. Diamond, Sens. Actuators B: Chem., 139, 231 (2009). https://doi.org/10.1016/j.snb.2009.02.032
  5. B. C. Kim, C. O. Too, J. S. Kwon, J. M. Ko and G. G. Wallace, Synth. Met., 161, 1130 (2011). https://doi.org/10.1016/j.synthmet.2011.01.015
  6. Q. Liu, M. H. Nayfeh and S.-T. Yau, J. Power Sources, 195, 7480 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.002
  7. Y-Y. Horng, Y-C. Lu, Y-K. Hsu, C-C. Chen and K-H. Chen, J. Power Sources, 195, 4418 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.046
  8. B. C. Kim, J. S. Kwon, J. M. Ko, J. H. Park, C. O. Too and G. G. Wallace, Synth. Met., 160, 94 (2010). https://doi.org/10.1016/j.synthmet.2009.10.011
  9. M. O. Jung, Y. I. Huh and W. J. Lee, Elastomer, 35, 188 (2000).
  10. K. Aoki and S. Tano, Electrochim. Acta, 50, 1491 (2005). https://doi.org/10.1016/j.electacta.2004.10.010
  11. C.-C. Hu and C.-H. Chen, J. Electroanal. Chem., 503, 105 (2001). https://doi.org/10.1016/S0022-0728(01)00385-0
  12. J. Motheo, E. C. Venancio and L. H. C. Mattoso. Electrochim. Acta, 43, 755 (1998). https://doi.org/10.1016/S0013-4686(97)00144-8
  13. J. Desilvestro, W. Scheifele and O. Haas. J. Electrochem. Soc., 139, 2727 (1992). https://doi.org/10.1149/1.2068971
  14. F. Fusalbe, D. Gouerec, D. Villers and D. Belanger. J. Electrochem. Soc., 148, A1 (2001). https://doi.org/10.1149/1.1339036
  15. T. Osaka, T. Nakajima, K. Shiota and T. Momma. J. Electrochem. Soc., 138, 2853 (1991). https://doi.org/10.1149/1.2085329
  16. K. Kanamura, Y. Kawai, S. Yonezawa and Z. Takehara. J. Electrochem. Soc., 142, 2854 (1995).
  17. T. P. Gujar, W. Kim, I. Puspitasari, K. D. Jung and O. S. Joo. Int. J. Electrochem. Sci., 22, 666 (2007).
  18. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Carbon, 37, 61 (1999). https://doi.org/10.1016/S0008-6223(98)00187-0
  19. Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z. L. Yu, Mater. Lett., 57, 988 (2002). https://doi.org/10.1016/S0167-577X(02)00911-4
  20. B.-J. Yoon, S.-H. Jeong, K.-H. Lee, H. S. Kim, C. G. Kim, J. H. Han, Chem. Phys. Lett., 388, 170 (2004). https://doi.org/10.1016/j.cplett.2004.02.071
  21. M. Jung, H.-G. Kim, J.-K. Lee, O.-S. Joo, S. Mho, Electrochim. Acta, 50, 857 (2004). https://doi.org/10.1016/j.electacta.2004.02.057

Cited by

  1. Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties vol.5, pp.36, 2015, https://doi.org/10.1039/C4RA16969G
  2. Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression vol.113, pp.10, 2013, https://doi.org/10.1063/1.4794835
  3. Carbon Black-Filled Nitrile Rubber Composite as a Flexible Electrode for Electrochemical Synthesis of Supercapacitive Polyaniline pp.02728397, 2018, https://doi.org/10.1002/pc.25069