• Title/Summary/Keyword: Bus ramp

Search Result 7, Processing Time 0.023 seconds

A Study of Board the Train Designed for Wheelchair Users on Welding Condition (휠체어 사용자를 위한 열차 탑승 장치 설계와 용접 조건)

  • Lee, Chul Ku;Kim, Incheol;Lee, Wooram
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2013
  • The ratio of mobility handicapped was 12,110,000 in late 2009 about 24.4% of total population. The number of handicapped population is increasing continuously due to traffic accidents and industrial disasters. Therefore, the purpose of this research is to suggest a design for passengers on wheelchairs to get into and off to raise handicapped or elderly people's right of mobility. The scope of this research is mobility handicapped especially wheelchair passengers who use vans, small buses, and trains. The ramp design of vans is module form. The ramp is moved with screw jack and guides are installed on each side to increase stability. Moreover, a bridge was installed for smooth getting in and off of the van. The ramp design for small bus is lowed by 200m in order not to have obstacle such as speed bump when getting in or off. In order to reduce vulnerable environment and administration, air slide cylinder was chosen. Lastly, for the ramp design of train, the principle of link was used that the simpler structure made the weight lighter and installation in the train became easier. If we look at the conjugation condition of heterogeneous materials to produce a ramp, proper welding condition for cold steel plate and stainless plate is 3kW output and 3-5m/min of welding speed using laser beam seems proper.

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao;Yu, Yixin;Zeng, Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1494-1503
    • /
    • 2018
  • This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

Evaluation of Ramping Capability for Day-ahead Unit Commitment considering Wind Power Variability (풍력발전의 변동성을 고려한 기동정지계획에서의 적정 Ramping 용량 산정)

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.457-466
    • /
    • 2013
  • Wind energy is rapidly becoming significant generating technologies in electricity markets. As probabilistic nature of wind energy creates many uncertainties in the short-term scheduling, additional actions for reliable market operation should be taken. This paper presents a novel approach to evaluate ramping capability requirement for changes in imbalance energy between day-ahead market and real-time market due to uncertainty of wind generation as well as system load. Dynamic ramp rate model has been applied for realistic solution in unit commitment problem, which is implemented in day-ahead market. Probabilistic optimal power flow has been used to verify ramping capability determined by the proposed method is reasonable in economic and reliable aspects. This approach was tested on six-bus system and IEEE 118-bus system with a wind farm. The results show that the proposed approach provides ramping capability information to meet both forecasted variability and desired confidence level of anticipated uncertainty.

Security Cost Analysis with Linear Ramp Model using Contingency Constrained Optimal Power Flow

  • Lyu, Jae-kun;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.353-359
    • /
    • 2009
  • This paper proposes a novel technique for calculating the security costs that properly includes ramping constraints in the operation of a deregulated power system. The ramping process is modeled by a piecewise linear function with certain assumptions. During this process, a ramping cost is incurred if the permissible limits are exceeded. The optimal production costs of the power producers are calculated with the ramping cost included, considering a time horizon with N-1 contingency cases using contingency constrained optimal power flow (CCOPF), which is solved by the primal-dual interior point method (PDIPM). A contingency analysis is also performed taking into account the severity index of transmission line outages and its sensitivity analysis. The results from an illustrative case study based on the IEEE 30-bus system are analyzed. One attractive feature of the proposed approach is that an optimal solution is more realistic than the conventional approach because it satisfies physical constraints, such as the ramping constraint.

A study on improving the bike way in the Urban river Waterfront (도시하천 수변공간 내 자전거도로 개선방안 연구)

  • Seo, Yong-Soo;Dong, Jae-Uk;Cho, Sung-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.481-489
    • /
    • 2017
  • The study area,Cheonan Stream, is an urban river that flows through urban areas in close proximity to densely populated areas and multi-use facilities. The natural river improvement project from 2006 to 2015 improved the quality of life of local residents with the improvement of river function, the restoration of the natural ecosystem and the securement of hydrophilic space. A bike way in the constructed waterside space was built focusing on trails. This study suggests improvements appropriate for insufficient bike way function-related regulations. The problems of ramps, river crossing facilities, stairway facilities, safety facilities, signs, road markings, and parking facilities, etc.have arisen in the utilization situation and citizen consciousness survey. As an improvement, it was suggested that 12% or fewer ramps should be improved, a submerged bridge should be installed at 7 places separated by stepping bridges, and signs and road markings according to bike way-related regulations should be installed and bike parking facilities at Cheonan station and Cheonan bus terminal should be expanded. The bike way in the waterfront of ChoenanCheon(river) will increase the accessibility and utilization rate of short-distance transportation with the institutional expansion of bike use facilities and work organizations and the improvement of facilities in accordance with urban rivers and bike-related regulations. Therefore, it is expected that the development of the living space will be beneficial for the citizens due to the elimination of traffic in the city and the activation of bike traffic.