• Title/Summary/Keyword: Bus model

Search Result 729, Processing Time 0.037 seconds

Research of Structural Safety Tolerance for Wheelchair Bus Rollover Characteristics (휠체어 탑승 개조버스의 구조안전성능 연구)

  • Shin, Jaeho;Han, Kyeonghee;Kim, Kyungjin;Yong, Geejoong;Kang, Byung Do
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.54-59
    • /
    • 2018
  • While the advanced trffic environment systems are developed recently, the traffic systems for transportation vulnerable are still under development and their social life are limited as well. In order to the secure their mobility rights, it had been required to set up the particular system for the traffic welfare. One of the significant items is the express bus operation for wheelchair users. Thus, the research of development and operation for express buses with wheelchair users was funded by the Korean government. Before the express bus development for wheelchair users based on the current bus model, this study set up the evaluation method for the bus rollover characteristics to ensure occupant safety using the finite element method. The partial bus model was developed corresponding to the full bus model response under rollover event and the evaluation method based on two model (full bus model and partial bus model) responses is planned to apply the model development of express bus modification for wheelchair users.

Improvement of Optimal Bus Scheduling Model Reflecting Bus Passenger's Degree of Satisfaction (이용자 만족도를 반영한 최적 버스 배차 간격 설정 모형의 개발)

  • Bae, Sang-Hoon;Kim, Tag-Young;Ryu, Byung-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.12-23
    • /
    • 2007
  • The purpose of this studγ if to understand problem of present bus scheduling system and to develop optimal bus scheduling model which improve bus passenger's degree of satisfaction(DOS) and bus company's operation efficiency at the same time. This study developed optimal bus scheduling model, which reflected bus passenger's degree of satisfaction(DOS), applied to existing model that summery of bus operation cost($C_o$), passenger queuing time cost($C_{pw}$) and passenger travel time cost($C_{pl}$). And optimal bus scheduling model which developed in this study is optimized that using LINGO program based on linear program. Also by using the general case in Busan, compare total cost of present bus scheduling system and existing scheduling model with total cost of optimal bus scheduling model which reflected bus passenger's degree of satisfaction(DOS).

  • PDF

An Experimental Study on the Aerodynamic Characteristics of a Streamline-designed High-speed Bus (유선형 고속주행 버스의 공력특성에 관한 실험 연구)

  • Kim, Chul-Ho;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.198-204
    • /
    • 2016
  • In this study, a wind tunnel test was conducted to measure the aerodynamic characteristics of a streamline-designed high-speed bus with the change of wind direction and speed and the result is compared with the aerodynamic performance of a commercialized high-speed bus model (Model-0) manufactured by Zyle Daewoo Bus Corp. Aerodynamic performance of the existing rear-spoiler was tested to prove its aerodynamic effect on the test model bus. From the study, it was found that 24.6 % of the total drag of the original bus model (Model-0) was reduced on the streamline-designed model bus(model-1) without the rear-spoiler but only 14.3 % of the total drag was reduced with the spoiler on the streamlined model bus. It means that the rear spoiler does not work properly with the streamlined model bus (model-1) and should be noted that an optimum design of a rear-spoiler of a vehicle is important to reduce the induced pressure drag and increase the driving stability of a vehicle against yaw motion. The experimental outcome was also compared to the previous numerical research result to evaluate the reliability of the numerical algorithm of the aerodynamic performance analysis of a vehicle. The error rate (%) of the numerical result to the experimental output is about 5.4 % and it is due to the simplified body configuration of the numerical model bus. The drag increases at the higher yaw angle because the transparent frontal area of the model vehicle increases and the downward force increases with the yaw angle as well. It has a positive effect to the driving stability of the vehicle but the moderated downward force should be kept for the fuel economy of a vehicle.

Development of Real-Time Optimal Bus Scheduling Models (실시간 버스 운행계획수립 모형 개발)

  • Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.587-595
    • /
    • 2008
  • Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.

System Dynamics Interpretation on Bus Scheduling Model (시스템 다이나믹스 관점에서의 버스 운영계획모형 해석)

  • Kim, Kyeong-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This paper aims mainly to reinterpretate Optimal Bus Scheduling Model by applying System Dynamics Perspective. Traditionally, the study regarding Optimal Bus Scheduling Model stems on the linear relationshp. However, this paper attempted to convert linear relationship based Optimal Bus Scheduling Model to causal loop perspective based Model. In result, the paper present Casual Loop Diagram for Optimal Bus Scheduling Model. Furthermore, the paper also ran a simulation based on Stock & Flow Diagram for Optimal Bus Scheduling Model. The outcome was not much different from the linear relationship based Model due to the similarity of the equation applied on two models.

  • PDF

A Study on Development of Bus Bunching Duration Model (버스몰림운행 지속시간 추정모형 개발에 관한 연구)

  • Kim, Eun-Gyeong;No, Jeong-Hyeon;Ryu, Si-Gyun
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.85-97
    • /
    • 2010
  • The present study aims at estimating the model of bus bunching duration along with its influential determinants in an attempt to understand the status of bus bunching being created by buses from various routes converging into one bus stop. To do so, the duration analysis, a well-known survival analysis, was adopted in order to capture the distribution of duration time as for 8 base lines, accordingly developing the model best fit for weibull distribution. Key attention to draw out the duration time model for bus bunching phenomena was laid, by analyzing 18 impact factors, on such criterion variables as number of berth, number of bus line in each berth and maximum capacity of on-and-off passengers in each line. Comparison in two typical types of bus lane was made between bus-only center lane(Dobong Mia-ro) and normal street-side lane(Tongil Euiju-ro). In this regard, the study, based on the model as above, suggested appropriate alternatives to improve the bus operation by effectively controlling bus bunching.

A Development of an Optimal Feeder-Bus Service Area (연계버스 서비스권역 결정에 관한 연구)

  • Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.199-211
    • /
    • 1995
  • Bus, Which is together with subway the main part of public transportation modes in the city, is reviewed for the development of an optimal feeder-bus service area. Based on the IDRISI of GIS package, and taking into account of the convenience of downtown-oriented public transportation users at peak time, a model for the development of feeder-bus service area and a solution and introduced. Major result in this study is as follows: Development is given to a model that is designed to overcome the shortage of the existing models, which has limits in simulating the real situation; Variables were used in combination so that bus and subway route, station spacing, and operating frequency can be determined simultaneously, which enables to elucidate the mutual relationship and the structure in public transportation system. A model for feeder-bus area development is also given applied to determination and opening of subway and urban express bus route and new transportation systems. The model developed in this paper is useful in the case of extension and opening of subway and urban express bus route and new transportation Systems.

  • PDF

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Establishment about Service Level and Evaluation Model of Bus Stop (버스 정류장의 서비스 수준 및 평가모델 구축에 관한 연구)

  • Lee, Won Gyu;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.217-225
    • /
    • 2008
  • Bus stop is necessary to improve user-focused environment to offer convenient service because of the large number of passengers. This study is to analyze user's evaluation and establishment model of the service levels at bus stop using GAP analysis, IPA and Structural equation model and suggests improvement direction of bus stop. In the GAP analysis, on thirty-one service items of bus stop, the difference appeared highly from the items such as obstacle's facility and the information related to the using bus. In the current IPA service bus operation information, cadence facility and obstacle support facility need to be improved. And in service expectation bus operation information and th exchange facility, the obstacle support facility need to be improved continuously. The evaluation model of bus stop service due to a structure equation's was fitted well by structure equation. In overall satisfaction on bus stop, the waiting satisfaction is more affect the satisfaction of bus use facility. Satisfaction in bus use facility, the related information of bus operation, cadence facility, bus operation information and trans facility, obstacle support facility is more affect compare to other items. The lower overall satisfaction in bus stop is the higher the expectation of overall satisfaction is. Therefore, the information of bus operation and the support facility for the handicapped needs an active improvement plan than ever.

Improve the Reliability Measures of Bus Arrival Time Estimation Model (버스도착시간 추정모형의 신뢰도 향상방안 연구)

  • Kim, Jisoo;Park, Bumjin;Roh, Chang-Gyun;Kang, Woneui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.597-604
    • /
    • 2014
  • In this study, we investigate to show the limitations of current bus arrival time estimation model based on each bus route, and to propose a bus arrival time estimation model based on a bus stop to overcome these limitations. Using the characteristic of bus arrival time calculated on travel time between two bus stops, we develop a model to estimate bus arrival times with the data of all buses traveling the same section regardless of bus route numbers. In the proposed model, an estimated arrival time is calculated by weighted moving average method, and verification between observed value and estimated time is performed on the basis of RMSE. Error was reduced by up to 20% compared to the existing models and the data update period was reduced by more than half that is related to the accuracy of bus arrival time information. We expect to solve the following problems with the suggested method: sudden increase or decrease in arrival time of the bus, the difference of the expected arrival times at the same stop between two or more buses having different route numbers, and impossibility of offering information of a bus if the bus is not operated with the designated schedule.