• Title/Summary/Keyword: Bus body

Search Result 85, Processing Time 0.03 seconds

Exposure Characteristics of Indoor Air Pollutants in Some Local Pubic Buses (IoT 기반 시내버스 실내공기질 노출 특성)

  • Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2022
  • Background: Air pollution is increasing together with industrialization and urbanization. In order to reduce air pollution, public transportation is recommended rather than private cars, and the number of passengers using public transportation is increasing accordingly. This study observes the concentration of indoor pollutants in city buses over time. Through this means, we intend to suggest a plan to manage the indoor air quality in city buses. Objectives: The concentration of indoor pollution in public transportation was investigated from April 2021 to January 2022. Based on this, we evaluated the exposure to indoor pollutants. Methods: Six city bus lines in an industrial city were selected for the research, and indoor pollution was measured through IoT (Internet of Things)-based sensor-type measuring devices. The concentration of pollutants was measured every minute, and statistical data were constructed based on the measurement results. Results: In all the city buses studied, the average concentration of pollutants were below the guidelines. However, some measurement results showed cases of exceeding the guidelines. As a result of the analysis by time zone, there were more cases in which pollutants exceeded the standard value during rush hour compared to at other times. A risk assessment for PM10 was performed by evaluating the excess mortality risk from exposure and the risk from inhalation exposure. Conclusions: All measured indoor pollutants in the city buses did not exceed the guidelines. Also, the risk assessment results were found to be within the level of safety. However, if a city bus is used for a long time, there is a possibility that there may be an impact on the human body due to inhalation exposure, so additional management is required.

Effects of Semi-Squat Exercise on Joint Position Sense and Balance to the Types of Support Surface in Hemiplegic Patients

  • Oh, Juyeong;Kim, Joong Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.242-247
    • /
    • 2022
  • Purpose: This study investigates the effect of 60° semi-squat exercises according to three different types of support surfaces. The effects were examined on joint position sense and balancing ability using stable and unstable surfaces in patients afflicted with post-stroke hemiplegia. Methods: Subjects were instructed to perform three sets of 60° semi-squat exercises according to the characteristics of the support surface conditions. The three ground states were bilateral stable surface (BSS), nonaffected side unstable surface (NUS), and bilateral unstable surface (BUS). The joint position sense, characteristics of body sway, and dynamic balance were analyzed according to floor conditions before and after the experiment. A balance-pad (50 cm W×41 cm L×6 cm H; Alcan Airex AG, Sins, Switzerland) was used for the unstable floor. Results: The 60° semi-squat exercises applied to hemiplegic patients showed the highest statistical significance in joint position sense in the NUS group, and Timed Up and Go test (TUG) in the BUS group (p<0.05). Conclusion: Functional training using an unstable surface can be applied as a meaningful intervention method for improving the balance and joint position sense of stroke patients.

Fuzzy Based Approach for the Safety Assessment of Human Body under ELF EM field Considering Power System States

  • Kim, Sang C.;Kim, Doo H.
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.117-122
    • /
    • 1997
  • This paper presents a study on the fuzzy based approach for the safety assessment of human body under ELF electric and magnetic(EM) field considering power system states. The analysis of ELF EM field based on quasi-static method is introduced. UP to the present, the analysis of ELF EM field has been conducted with the consideration of one transmission line, or a power line model only In this paper, however, the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes and the states are classified into two types, normal state resulting from normal operation and emergency state from outages. In order to analyze the uncertainty in the normal state, the Monte Carlo Simulation, a statistic approach was introduced and line current and bus voltage distribution are calculated by a contingency analysis method, in the emergency state. To access the safety of human body, the approach based on fuzzy linguistic variable is adopted to overcome the shortcomings of the assessment by a crisp set concept. In order to validate the usefulness of the approach suggested herein, the case study using a sample system with 765(kV) was done. The results are presented and discussed.

  • PDF

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

Boundary Condition for Bare Chassis Brackets of the Commercial Vehicle

  • Yang, Seung Bok
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.94-100
    • /
    • 2022
  • It is common for commercial vehicles to make the top part according to the use after making the bear chassis, and to connect various devices with the bear chassis. Various brackets used in bear chassis for the development of all automobiles, including commercial vehicles, play a role of connecting the components required for driving and operating the car to the car body. In commercial vehicles, components necessary for operation are installed in the bear chassis; that is, the bear chassis of commercial vehicles is a space where the devices required for driving and operating the vehicle are installed. The devices required for the configuration of the vehicle are drive, brake, exhaust and steering, etc. These devices are basically connected to the body, the front axis, or the rear axis. The part interlinking the apparatuses required for the vehicle drive to the car body or axis is bracket. In this study, we analyzed the boundary conditions to evaluate the stability of the three brackets that connect the components of the car to the front axis of the new type of 30-seater bus in the development process. In order to analyze the boundary conditions, the boundary conditions according to the driving condition of the vehicle were classified. For stress analysis to evaluate the stability of brackets according to the driving state of the vehicle, it is reasonable to give the bracket a boundary condition of harsh conditions.

A Study on the Distribution of Scatter Ray in Chest Radiography of a Health Examination Bus (건강검진 차량 내 흉부 방사선검사 시 공간산란선 분포 연구)

  • Cho, Ji-Hwan;Jin, Seong-jin;Min, Byeong-In
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.377-383
    • /
    • 2017
  • The purpose of this study was to evaluate the distribution of spatial scatter ray on the chest radiographs of patients on health examination bus. In this paper, we propose a method for minimize unnecessary exposure by measuring the scattered dose after exposure the actual subject and comparing the body mass index (BMI) with the tube current amount mAs. The results of this study showed that the mean BMI of the subjects was $23.31{\pm}3.12$. The mean mAs value was $2.92{\pm}1.19$, which males was higher than females. The mean value of the scatter ray at position 1 in the radiography room was $771.81{\pm}151.15{\mu}Sv/hr$. The mean value of the scatter rays at the position 2 outside the entrance of the radiography room was measured as $53.86{\pm}25.66{\mu}Sv/hr$. As the BMI and mAs was increase the spatial scatter dose was increased at position 1 and position 2 in the photographing room. In order to minimize the exposure dose of scatter ray, radiation workers should shoot the radiation as low as possible within the range that does not impair the quality of the image. It will be necessary to make efforts to not wait for a waiting person near the entrance door of the photographing room.

Development of a CAN-based Real-time Simulator for Car Body Control

  • Kang, Ki-Ho;Seong, Sang-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.444-448
    • /
    • 2005
  • This paper presents a developing procedure of the CAN-based real-time simulator for car body control, aiming at replacing the actual W/H (Wiring Harness) and J/B(Junction Box) couple eventually. The CAN protocol, as one kind of field-bus communication, defines the lowest 2 layers of the ISO/OSI standard, namely, the physical layer(PL) and the data link layer(DLL), for which the CSMA/NBA protocol is generally adopted. For CPU, two PIC18Fxx8x's are used because of their built-in integration of CAN controller, large internal FLASH memory (48K or 64K), and their costs. To control J/B's and actuators, 2 controller boards are separately implemented, between which CAN lines communicate through CAN transceivers MCP255. A power motor for washing windshield, 1 door lock motor, and 6 blink lamps are chosen for actuators of the simulator for the first stage. For the software architecture, a polling method is used for the fast global response time despite its slow individual response time. To improve the individual response time and to escape from some eventual trapped-function loops, High/Low ports of the CPU are simply used, which increases the stability of the actuator modules. The experimental test shows generally satisfactory results in normal transmitting / receiving function and message trace function. This simulator based on CAN shows a promising usefulness of lighter, more reliable and intelligent distributed body control approach than the conventional W/H and J/B couple. Another advantage of this approach lies in the distributed control itself, which gives better performance in hard real-time computing than centralized one, and in the ability of integrating different modules through CAN.

  • PDF

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

Development of a Body Network System with GSEK/VDX Standards and CAN Protocol (OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발)

  • 신민석;이우택;선우명호;한석영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.

Structure Borne Durability Design of a Vehicle Body Structure (차체구조의 구조기인 내구 설계)

  • 김효식;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.