• Title/Summary/Keyword: Burst criterion

Search Result 23, Processing Time 0.024 seconds

A Study on Prevention of Central Burst Defects in Wire Drawing (인발공정의 내부결함 방지에 관한 연구)

  • 고대철;김병민;강범수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3098-3107
    • /
    • 1994
  • The central burst defects, so-called chevroning, in wire drawing are analyzed by the rigid-plastic finite element method. The occurrence of central burst defects in wire drawing is estimated by the distribution of the hydrostatic pressure around the central part of the workpiece. It has been possible to obtain numerical boundaries which, in reduction in area vs. semicone angle plane, divide the safe and the danger zones, depending on friction factors and material properties. Based on the results of the analysis, it is suggested that the previous criterion derived from the upper bound analysis should be modified for better prediction of the defects. The back tension and the billet with a spherical hole on the central axis are also included in the analysis of the defects.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Development of an Integrity Evaluation Program for Corroded City Gas Pipelines

  • Shim, D.J.;Yun, K.O.;Choi, J.B.;Kim, Y.J.;Kim, W.S.;Choi, S.C.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.164-170
    • /
    • 2005
  • Pipelines have the highest capacity and are the safest and the least environmentally disruptive means for transmitting gas or oil. Recently, failures due to corrosion defects have become a major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. In this paper, a Fitness-For-Purpose(FFP) type limit load solution for corroded city gas pipelines is proposed. For this purpose, a series of burst tests with various types of machined defects were performed. Finite element simulations were carried out to derive an appropriate failure criterion. Based on such solution along with existing solutions, an integrity evaluation program for corroded city gas pipeline, COPAP-CITY, has been developed.

Performance Analysis of Transmission rate Scheduling Schemes for non-real Service in Burst-Switching (DS/CDMA) System (버스트 교환 방식 CDMA 시스템에서의 패킷 데이터 서비스를 위한 전송률 스케줄링 기법 비교 분석)

  • 김미정;김수원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.574-582
    • /
    • 2004
  • This paper shows the performance comparisons of several different rate scheduling schemes for non-real time data service over the uplink of burst switching-based direct sequencecode division multiple access (DS/CDMA) system to support the integrated voice/data service. The closed-form solution of optimal scheduling formulation, which minimizes average transmission delay when all of the active data users are transmitting simultaneously, is presented and mathematical analyses with other rate scheduling schemes, which provide efficiency criterion of transmission delay for rate scheduling schemes, are performed. Numerical results show the analyses explicitly.

Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows (원주방향 균열이 발생되는 곡관 감육부의 형상적 특성)

  • Kim, Jin Weon;Lee, Sung Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests (감육배관 손상시험 결과를 이용한 국부손상기준 검증)

  • Kim, Jin-Weon;Lee, Sung-Ho;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1393-1400
    • /
    • 2009
  • The objective of this study is to validate local failure criteria, which were proposed based on the notched-bar specimen tests combining with finite element (FE) simulations, using the results of real-scale pipe failure tests. This study conducted burst test using wall-thinned pipe specimens, which were made of 4 inch Sch.80 ASTM A106 Gr.B carbon steel pipe, under simple internal pressure at ambient temperature and performed associated FE simulations. Failure pressures were estimated by applying the failure criteria to the results of FE simulations and were compared with experimental failure pressures. It showed that the local stress based criterion, given as true ultimate tensile stress of material, accurately estimated the failure pressure of wall-thinned pipe specimens. However, the local strain based criterion, which is fracture strain of material as a function of stress tri-axiality, could not predict the failure pressure. It was confirmed that the local stress based criterion is reliably applicable to estimation of failure pressure of local wall-thinned piping components.

An Early Stopping Criterion for Turbo Processing of MIMO-OFDM in IEEE 802.16e Mobile WiMax System (IEEE 802.16e Mobile WiMax 시스템에서 MIMO-OFDM의 터보 처리를 위한 조기 정지 기법)

  • Hwang, Jong-Yoon;Cho, Dong-Kyoon;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.537-543
    • /
    • 2007
  • In this paper, we propose a new stopping criterion for the turbo processing (Turbo-BLAST) of MIMO-OFDM system. To reduce the high computational complexity of turbo-BLAST, it is desirable to lessen the outer-loop iteration number. In a system such as IEEE 802.16e Mobile WiMax, no CRC bits are available except the last encoding packet of a transmitted burst, so early stopping criteria without the help of CRC bits are needed. The proposed criterion counts the sign differences between received parity bits and the re-encoded parity bits from received information bits. With the tail-biting code which is accepted for IEEE 802.16e, a method that the re-encoder operates at half complexity is also proposed. Computer simulations show that the proposed stopping criterion approaches the performance of GENIE aided criterion with less average number of iterations than the other early stopping criteria.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Liu, Xuesheng;Hu, Shanchao;Gu, Qingheng
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

Damage Type and Remaining Strength of Damaged Pipelines due to the Third Party Interference (외부장비에 의한 손상배관의 손상유형 및 잔류강도)

  • Kim, Young Pyo;Baek, Jong Hyun;Kim, Cheol Man;Kim, Woo Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.20-26
    • /
    • 2009
  • The dominant incidents category for onshore and offshore natural gas transmission pipelines in the world is associated with outside forces. Incidents in the outside forces category embrace acts of nature, which typically cause widespread structural damage, as well as act of man, whose effects tend to cause dents and/or gouges localized at point of contact that are referred to as mechanical damage. Therefore, these damage types must be better addressed to avoid unnecessary and costly repairs and the possibility of catastrophic events. First of all, the characterizing features of mechanical damage in gas pipelines were evaluated by using of excavator or boring machine. There is no reliable method for evaluating the safe operating pressure of pipeline affected by mechanical damage. It is especially important to evaluate the remaining strength of damaged pipelines due to outside force. Therefore, the full scale burst tests were conducted to evaluate the remaining strength of pipe with mechanical damage that combines a dent and a gouge. This paper is supposed to provide information that will assist in developing a criterion to assess serviceability in pipelines with mechanical damage.

  • PDF