• Title/Summary/Keyword: Burr-hole

Search Result 121, Processing Time 0.03 seconds

Surgery for Bilateral Large Intracranial Traumatic Hematomas : Evacuation in a Single Session

  • Kompheak, Heng;Hwang, Sun-Chul;Kim, Dong-Sung;Shin, Dong-Sung;Kim, Bum-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.6
    • /
    • pp.348-352
    • /
    • 2014
  • Objective : Management guidelines for single intracranial hematomas have been established, but the optimal management of multiple hematomas has little known. We present bilateral traumatic supratentorial hematomas that each has enough volume to be evacuated and discuss how to operate effectively it in a single anesthesia. Methods : In total, 203 patients underwent evacuation and/or decompressive craniectomies for acute intracranial hematomas over 5 years. Among them, only eight cases (3.9%) underwent operations for bilateral intracranial hematomas in a single session. Injury mechanism, initial Glasgow Coma Scale score, types of intracranial lesions, surgical methods, and Glasgow outcome scale were evaluated. Results : The most common injury mechanism was a fall (four cases). The types of intracranial lesions were epidural hematoma (EDH)/intracerebral hematoma (ICH) in five, EDH/EDH in one, EDH/subdural hematoma (SDH) in one, and ICH/SDH in one. All cases except one had an EDH. The EDH was addressed first in all cases. Then, the evacuation of the ICH was performed through a small craniotomy or burr hole. All patients except one survived. Conclusion : Bilateral intracranial hematomas that should be removed in a single-session operation are rare. Epidural hematomas almost always occur in these cases and should be removed first to prevent the hematoma from growing during the surgery. Then, the other hematoma, contralateral to the EDH, can be evacuated with a small craniotomy.

Negative Pressure Aspiration of Spontaneous Intracerebral Hematoma (자발성 뇌내혈종의 음압배액술)

  • Kim, Il-Man;Son, Eun Ik;Kim, Dong Won;Yim, Man Bin
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.738-743
    • /
    • 2000
  • Objectives : The less invasive stereotactic surgery of hypertensive intracerebral hematoma has been preferred. Many techniques were developed to facilitate aspiration of a dense blood clot in acute stage. Authors describe a method for evacuation of putaminal hematoma via computerized tomography(CT)-aided free-hand stereotactic infusion of urokinase and frequent negative pressure aspiration. Patients and Methods : A total of ten patients with spontaneous putaminal hematoma underwent surgery with negative pressure aspiration in the three-year period. All procedures were performed within 12 hours of insult. A silicone ventricular catheter was inserted into the center of hematoma through a burr hole at the Kocher's point under local anesthesia. In a typical case of putaminal hematoma, the trajectory of catheter was pointed the center of hematoma parallel to sagittal plane vertically and the external auditory meatus posteriorly. Immediately after the first trial of hematoma aspiration low-dose urokinase solution(2,000IU/5ml saline) was administrated through the catheter and drain was clipped for 30 minutes. Subsequently, the partially liquified hematoma was manually aspirated using a 10ml syringe with a negative pressure of less than 2 to 3ml. The procedure was carefully repeated every 1 hour until the hematoma was near totally evacuated. Results : The patients population consisted composed of 4 men and 6 women with a mean age of 61.6 years. All had major neurological deficits preoperatively. The mean hematoma volume was 44.3 ml and hematoma was drained for 20 to 48 hours. No complications such as rebleeding, meningitis, or malplaced catheter were noted. Outcome was moderately disabled in four patients and good recovery in three patients. Conclusion : Although the frequent negative pressure aspiration and low-dose urokinase infusion has the disadvantage of possbility of rebleeding and infection, it is consisdered to be an effective method because it allows a simple, safe, and complete removal of hematoma.

  • PDF

Indications and Surgical Results of Twist-Drill Craniostomy at the Pre-Coronal Point for Symptomatic Chronic Subdural Hematoma Patients

  • Lee, Jin-Young;Kim, Bum-Tae;Hwang, Sun-Chul;Im, Soo-Bin;Shin, Dong-Seong;Shin, Won-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • Objective : Twist-drill craniostomy (TDC) with closed-system drainage and burr-hole drainage (BHD) with a closed system are effective treatment options for chronic subdural hematoma (CSDH). The aim of this study was to analyze clinical data and surgical results from symptomatic CSDH patients who underwent TDC with closed-system drainage at the pre-coronal point (PCP). Methods : We analyzed data for 134 symptomatic CSDH patients who underwent TDC at the PCP with closed-system drainage. We defined the PCP for TDC to be 1 cm anterior to the coronal suture at the level of superior temporal line. TDC at the PCP with closed-system drainage was selected in patients with CSDH that extended beyond the coronal suture, confirmed by preoperative CT scans. Medical records, radiological findings, and clinical performance were reviewed retrospectively. Results : Of the 134 CSDH patients, 114 (85.1%) showed improved clinical performance and imaging findings after surgery. Catheter failures were seen in two cases (1.4%); the catheters were inserted in the epidural space. Recurrent cases were seen in eight patients (5.6%), and they were improved with a second BHD with a closed-system operation. Conclusion : TDC at the PCP with closed-system drainage is safe and effective for patients with symptomatic CSDH whose hematomas extend beyond the coronal suture.

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.

Brain Abscess Uptake at TI-201 Brain SPECT (탈륨-201 SPECT에서 뇌농양 집적)

  • Lee, Won-Hyoung;Han, Eun-Ji;Yoo, le-Ryung;Chung, Yong-An;Sohn, Hyung-Sun;Kim, Sung-Hoon;Chung, Soo-Kyo;Choi, Yeong-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.339-341
    • /
    • 2007
  • A 22-year-old woman with a history of acute lymphoblastic leukemia was hospitalized for headache and vomiting. CT scan showed a well-defined, ring like enhancing mass in the left frontal lobe with surrounding edema and midline shift. Magnetic resonance imaging demonstrated a round homogeneous mass with a ring of enhancement in the left frontal lobe. Tl-201 brain SPECT showed increased focal uptake coinciding with the CT and MRI abnormality. Aspiration of the lesion performed through a burr hole yielded many neutrophils, a few lymphocytes and histiocytes with some strands of filamentous microorganism-like material. Modified AFB stained negative for norcardia. Gram stain showed a few white blood cells and no microorganism. Antibiotics were started and produced a good clinical response. After one month, CT scan showed markedly reduction in size and extent was observed.

Hyperacute Radiation Effect on Cerebral Cortex after Local Gamma-irradiation in the Rat Brain (단일 국소방사선 조사 후 백서 대뇌 피질의 초급성기 변화에 대한 연구)

  • Kang, Shin-Hyuk;Chung, Yong-Gu;Kim, Han-Kyum;Kim, Chul-Yong;Lee, Hoon-Kap
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.370-374
    • /
    • 2005
  • Objective: We investigated the morphologic changes within 24 hours after a single ${\gamma}$-irradiation in the rat brain. Methods: Forty Sprague-Dawley rats were used. After a burr hole trephination on right parietal area, cerebral hemisphere was irradiated with 2Gy and 5Gy using iridium-192($^{192}Ir$), respectively. The effect was assessed at 4, 8, 12 and 24 hours after irradiation. The histological changes were scored following the detection of edema or disarray severity. TUNEL-positive cells exhibiting apoptotic morphology were counted in irradiated region. Results: Cortical edema and disarray were initially showed at 4 or 8 hour and almost all defined at 24 hour after irradiation. And the injury was wedge shape. TUNEL-positive cells were minimal at 8 hour after irradiation as the number of positive cells were $2.6{\pm}5.27$(n=5) after 2Gy, and $0.8{\pm}0.84$(n=5) after 5Gy. But, the number of apoptotic cells were increased markedly to $60{\pm}6.24$ at 12 hour after 2Gy and to $104{\pm}19.7$ at 24 hour after 5Gy. Conclusion: There were prominent morphologic changes immediately after ${\gamma}$-irradiation. And, apoptosis was increased according to the time period. These findings implicate that brain irradiation induces rapid apoptotic change, which may play an important role in the pathogenesis of radiation-induced pathologic conditions.

CT Scan Findings of Rabbit Brain Infection Model and Changes in Hounsfield Unit of Arterial Blood after Injecting Contrast Medium (토끼 뇌감염 모델의 CT 소견과 조영제 주입 후 동맥혈의 Hounsfield Unit의 변화)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.270-279
    • /
    • 2012
  • This paper explores CT findings of a rabbit brain infection model injected with Escherichia coli and investigates the changes in Hounsfield unit (HU) of arterial blood over time. The brain infection model was produced by injecting E. coli $1{\times}10^7$ CFU/ml, 0.1 ml through the burr hole in the calvarium; 2~3 mm in depth from the dura mater, and contrast-enhanced CT, dynamic CT and arterial blood CT images were gained. It was found that various brain infections such as brain abscess, ventriculitis and meningitis. The CT image of brain abscess showed a typical pattern which the peripheral area was strongly contrast-enhanced while the center was weakly contrast-enhanced. The CT image of ventriculitis showed a strong contrast-enhancement along the lateral ventricle wall, and the CT image of meningitis showed a strong contrast-enhancement in the area between the telencephalon and the diencephalon. In dynamic CT images, the HU value of the infection core before injecting contrast medium was $31.01{\pm}3.55$. By 10 minutes after the injection, the value increased gradually to $40.36{\pm}3.76$. The HU value in the areas of the marginal rim where was hyper-enhanced showed $47.23{\pm}3.12$ before contrast injection, and it increased to $63.59{\pm}3.31$ about 45 seconds after the injection. In addition, the HU value of the normal brain tissue opposite to the E. coli. injected brain was $39.01{\pm}3.24$ before the injection, but after the contrast injection, the value increased to $49.01{\pm}4.29$ in about 30 seconds, and then it showed a gradual decline. In the arterial blood CT, the HU value before the contrast injection was $87.78{\pm}6.88$, and it increased dramatically between 10 to 30 seconds until it reached a maximum value of $749.13{\pm}98.48$. Then it fell sharply to $467.85{\pm}62.98$ between 30 seconds to 45 seconds and reached a plateau by 60 seconds. Later, the value showed a steady decrease and indicated $188.28{\pm}25.03$ at 20 minutes. Through this experiment, it was demonstrated that the brain infection model can be produced by injecting E. coli., and the characteristic of the infection model can be well observed with contrast-enhanced CT scan. The dynamic CT scan showed that the center of the infection was gradually contrast-enhanced, whereases the peripheral area was rapidly contrast-enhanced and then slowly decreased. As for arterial blood, it increased significantly between 10 seconds to 30 seconds after the contrast medium injection and decreased gradually after reaching a plateau.

Evaluation of Cat Brain infarction Model Using MicroPET (마이크로 PET을 이용한 고양이 뇌 경색 모델의 평가)

  • Lee, Jong-Jin;Lee, Dong-Soo;Kim, Yun-Hui;Hwang, Do-Won;Kim, Jin-Su;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.528-531
    • /
    • 2004
  • Purpose: PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal charge using microPET scanner. Materials and Methods: Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ${\mu}l$ was injected using 30 G needle for 5 minutes to establish the infarction model. $^{18}F$-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, $^{18}F$-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Results: Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. Conclusion: We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using $^{18}F$-FDG microPET scanner.

Measuring System of Visual Evoked Potential (VEP) in Mice using BioPAC Modules (BioPAC 모듈을 이용한 마우스 시각유발전위 측정 시스템 확립)

  • Lee, Wang Woo;Ahn, Jung Ryul;Goo, Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • For the development of feasible retinal prosthesis, one of the important elements is acquiring proper judging tool if electrical stimulus leads to patient's visual perception. If evoked potential to electrical stimulus is recorded in primary visual (V1) cortex, it means that the stimulus effectively evokes visual perception. Therefore, in this study, we established VEP recording system on V1 cortex using BioPAC modules as the judging tool. And the measuring system was evaluated by recording VEP of mice. After anesthesia, normal mice (C57BL/6J strain; n = 6) were secured to stereotaxic apparatus (Harvard Apparatus, USA). For the recording of VEP, the stainless steel needle electrode (impedance: $2-5k{\Omega}$) was positioned on the surface of the cortex through the burr hole at 2.5 mm lateral and 4.6 mm caudal to bregma. DA 100C and EEG 100C BioPAC modules were used for the trigger signal and VEP recording, respectively. When left eye was blocked by black cover and right eye was stimulated by flash light using HMsERG (RetVet Corp, USA), VEP response at left V1 cortex was detected, but there was no response at right V1 cortex. Amplitudes and latencies of P2, N3 peaks of VEP recording varied according to the depths of the electrodes on V1 cortex. From the surface upto $600{\mu}m$ depth, amplitudes of P2 and N3 increased, while deeper than $600{\mu}m$, those amplitudes decreased. The deeper the insertion depth of the electrode, the latency of N1 peaks tends to be delayed. However, there was no statistically significant difference among the latencies of P2 and N3 peaks (P > 0.05, ANOVA). Our VEP recording data such as the insertion depth and the latency and amplitudes of peaks might be used as guidelines for electrically-evoked potential (EEP) recording experiment in near future.

Expression of Cytokines in Radiation Injured Brain at Acute Phase

  • Lee, Jang-Bo;Kim, Min-Ho;Chung, Yong-Gu;Park, Jung-Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2007
  • Objective : Radiation therapy is an important treatment for brain tumor. However, serious complications such as radiation necrosis can occur and it may be secondary to the expression of acute phase genes, like cytokines. In particular, inflammatory cytokines (IL-$1{\beta}$, TNF-${\alpha}$) and other immunomodulatory cytokines (TNF-${\alpha}$, TGF-${\beta}1$) might be changed after irradiation (high single dose irradiation). Although it has been reported that IL-1 level is remarkably elevated within 8 week after the irradiation to the rat brain. the change of cytokines levels at acute phase (within 24 hours) has not been reported. In the present study, we examined TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$ levels in acute phase to clarify the early effect of cytokines on the radiation-induced brain damage. Methods : Fifty Sprague-Dawley rats were used and these were divided into irradiation group and control group. After a burr-hole trephination on the right parietal area using a drill, a single 10Gy was irradiated at the trephined site. Their forebrains were extirpated at 30 min, 2 hr, 8 hr, 12 hr and 24 hr, respectively and examined for the expression of TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$. Results : The expression of TNF-${\alpha}$ and TGF-${\beta}1$ were decreased until 12 hr after irradiation but elevated thereafter. The expression of IL-1 was peak at 8 hr and then decreased until 12 hr but elevated after this time window. The present study indicated that expression of cytokines (TNF-${\alpha}$, TGF-${\beta}1$ and IL-$1{\beta}$) were increased at 24 hr after the irradiation to the rat brain. IL-$1{\beta}$ level, on the other hand. reached peak at 8 hr after radiation injury. Conclusion : These findings indicate that IL-1, among various cytokines, may have a more important role in the inflammatory reaction by radiation injury at acute phase and provide some clues for better understanding of the pathogenesis of radiation injury.