• Title/Summary/Keyword: Burning time

Search Result 346, Processing Time 0.025 seconds

An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments (폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구)

  • 정종수;박은성;박종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.

Comparison Study on Burning and Ignition Characteristics for Single Aluminum and Magnesium Particles (EDB에 의해 부양된 알루미늄과 마그네슘 단일 입자의 점화 및 연소 특성 비교 연구)

  • Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.311-316
    • /
    • 2010
  • The ignition and the burning characteristics of aluminum and magnesium particles ($30-110{\mu}m$ in diameter) isolated due to electrodynamic levitation were experimentally investigated. The burning time, the ignition delay time, the flame temperature, and the flame diameter were measured. The thermal radiation intensity was measured using the photomultiplier tube and the combustion history was monitored by high-speed cinematography. Two-wavelength pyrometry measured the temperature of the burning particles. The burning times of aluminum particles were measured approximately 5 to 8 times longer than those of magnesium particles. Exponents of $D^n$-law, for the burning rate of magnesium and aluminum particles of diameters less than $110{\mu}m$, are found to be 0.6 and 1.5, respectively. The instant of aluminum ignition is clearly distinguished with the ignition delay time little less than 10 ms, however the burning history of magnesium particle exhibits no distinct instant of the ignition. The ignition delay time of magnesium particle (less than $110{\mu}m$) were approximately shown in the range from 50 to 200 ns. The flame temperatures of single metal particles are lower than the boiling point of the oxide. The nondimensional flame diameters for magnesium are decreased with increasing of the diameter. The nondimensional flame diameters for aluminum are not changed significantly.

  • PDF

A Study on Combustion Property of Oxidizing Solid-Combustible Support Mixtures (산화성고체-조연제 혼합물의 연소성에 관한 연구)

  • 송영호;강민호;정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 2003
  • The purpose of this study was to review the factors that influence on the combustion experiment of oxidizing solid such as mixing ratio of oxidizing solid and combustible support content ratio of oxidizing solid, ambient temperature, maturing time, combustible support, and additives. The 30g mixing compound samples of oxidizing solid and combustible support were tested with different mixing ratios. As a result, the Infest burning time was measured when mixing ratio was 4 (oxidizing solid) : 1 (combustible support). And the burning time was decreasing as the ambient temperature and maturing time were increasing.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

Risk Evaluation of Oxidizing Substances by Burning Test Method (연소시험법에 의한 산화성물질의 위험성 평가)

  • 정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.73-82
    • /
    • 1992
  • This paper was concerned with the risk evaluation of oxidizing substances by burning test method. The samples were prepared the heaped cone-shaped mixtures of solid oxidizing sub-stance with sawdust, and ignition of the sample was made on contact with heating wire inside the combution chamber that the temperature and humidity of atmosphere can be kept at $25^{\circ}C$ and 60% respectively. Accordingly, it were measured the combustivity effect of mixing ratio and amount of sample weight on the burning rate. As a result of burning test of these samples, it could be noticed that the case when the sawdust has so and 30 wt.% in the mixing ratio shows effective combustivity, and as the amount of sample weight was increasing, It showed more rapid burning time. So the average burning time could be obtained by considering the weighting factors to the parameters of the mixing ratio and the amount of sample weight. Finally, it was compared with the effects of cation and anion of oxidizing substances and also applied analytically to the classification and evaluation of oxidizing sub-stances as dangerous goods.

  • PDF

Evaluation of Uncertainty in Burning Rate Measurement of Solid Propellant using Ultrasound (초음파를 이용한 고체추진제 연소속도 측정 불확실도 평가)

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The advantage of ultrasonic burning rate measurement of solid propellant is measuring burning rates with wide range of pressure in a single test. In the ultrasonic method, instantaneous thickness of solid propellants as function of pressure or time were measured using time of flight(TOF) of ultrasonic signals. So, uncertainties of the measured burning rates by ultrasonic method have to evaluate with variation of pressure, TOF and initial propellant thickness. In this study, we evaluated uncertainties of ultrasonic method for measuring burning rates on the types 317 and the 318 propellants.

  • PDF

A Study on the Transient Combustion Characteristic in PE-GOX Hybrid Rocket (PE-GOX 하이브리드 로켓에서의 과도 연소 특성 연구)

  • Cho, Sung-Bong;Lee, Jung-Pyo;Song, Na-Young;Kim, Soo-Jong;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.228-231
    • /
    • 2006
  • In general, burning time is not considered with a factor of an empirical relation on the combustion characteristic in hybrid propulsion system. So, The effect of burning time on hybrid combustion characteristics and propulsion characteristics was studied. As results, regression rate is decrease with burning time, but fuel mass flux is maintained nearly constant with burning time at given oxidizer mass flux.

  • PDF

Studies on Plywood Treated Fire-Retardant - III. The Fire-Retardant Degree of Monoammonium Phosphate Treated Plywood (합판(合板)의 내화처리(耐火處理)에 관(關)한 연구(硏究) - III. 제1인산(第一燐酸)암모늄처리합판(處理合板)의 내화도(耐火度))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Plywood used for construction as a decorative inner material is inflammable and can fire accident, causing destruction of human life and property. In this study, 3.5mm Kapur plywoods were soaked in the 23% monoammonium phosphate solutions by cold soaking method 3, 6, 9hrs and hot-cold bath method for 3/3hrs, and redrying was carried out by press-drying at the platen temperature of 110, 130, 160, 180$^{\circ}C$, and then fire test was carried out to investigate burning point, flame exhausted length, frame spread length, back side carbonized area and weight loss. The results are as follows; 1. In cold soaking method for 3, 6, 9hrs. retentions of monoammonium phosphate were 0.377, 0.448, 0.498kg/(30cm)$^3$ respectively, and in hot-cold bath method for 3/3hrs, the retention was 1.331kg(30cm)$^3$ that exceeded the minimum retention 1.124kg/(30cm)$^3$. 2. Correlation coefficients among the variable were shown in table 2. From the table, it could be recognized that there were close negative correlations between the treatment and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, and there was negative correlation between treating time and back side carbonized area, but there was positive correlation between platen temperature and burning point. 3. From table 3, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carhonized area, weight loss between treatments. And in 2-way interactions, there were also highly significant for burning point, flame spread length, flame exhausted time, weight loss between time x treatment. 4. It was observed that burning point, flame exhausted time, flame spread length, back side carbonized area, and weight loss in fire-retardant treated plywood were the best effects in fire-retardant treated plywood, water treated plywood and nontreated plywood. In conclusion, I can estimate that absorbed chemical contents by hot-cold bath method for 3/3hrs, have a lot of effects on fire-retardant factors such as burning point, flame spread length, flame exhausted time, backside carbonized area and weight loss, but platen temperatures have a little effects on the fire factors.

  • PDF

Combustion Characteristics of Immobilized Alcohols in Porous Material (다공성 물질에 함침시킨 알콜의 연소특성)

  • 우인성;황명환
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 1994
  • Combustion phenomena(characteristics) of organic solvents including various alcohols Immobilized on ceramic balls were studied. Experiments were performed by burning methyl, ethyl, and propyl alcohol immobilized on sands (particle size 0.35mm) and coramic balls(particle size 1~5mm) to measure mass burning rate, height burning rate and combustion temperature. The longer time from ignition to extinguishment was resualted from the larger particle size of ceramic balls and the smaller size of ceramic balls exhibited the higher mass burning rate. Of alcohols tested the relative magnitude of facilitation of combustion was methyl >ethyl >propyl. Combustion temperatare of alcohols, without regard to the types of alcohols, was not increased with smaller ceramic balls(up to 3mm of particle size). However, with larger ceramic balls, combustion temperatare of alcohols was increased by 40~5$0^{\circ}C$ and the highest combustion temperatare was obtained with sands(particle size 0.35mm). Also, second rising was occurred at the combustion time of I5-20min. and this second rising time was increased with the smaller particle. These results will be able to be used for petrochemical industries using particles to evaluate the danger of fire and explosion.

  • PDF

A Comparative Study on the Fire Retardancy of Sealer Coated Plywood by BMCT and IPT (건축재료연소시험기(建築材料燃燒試驗機)와 경사판(傾斜板) 시험기(試驗器)를 이용(利用)한 합판(合板)의 내화도(耐火度) 측정비교(測定比較))

  • Lee, Phil-Woo;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.22-27
    • /
    • 1982
  • This experiment was carried out to evaluate the results of fire retardancy of sealer coated plywood by Building material combustibility tester and Inclined panel tester. At this study, weight loss percentage, flame exhausted time, burning point and smoke yield coefficient were examined. The findings of this study lead to conclusions as listed below. 1. It was obvious that weight loss percentage and flame exhausted time of Inclined panel tester had more remarkable tendency than those of Building material combustibility tester. 2. Burning point was determined by Inclined panel tester while smoke yield coefficient by Building material combustibility tester. 3. Weight loss percentage decreased remarkably with proportion to the increase of sealer coated amount during 5 minutes burning. 4. Flame exhausted time decreased with proportion to the increase of sealer coated amount during 3 minutes burning. 5. Burning point indicated increasing tendency with proportion to the increase of sealer coated amount. 6. Smoke yield coefficient of urea scaler showed definite inclination decreasing with the increase of sealer coated amount.

  • PDF