• Title/Summary/Keyword: Burning

Search Result 1,951, Processing Time 0.024 seconds

An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments (폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구)

  • 정종수;박은성;박종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.

A Suggestion for the Burning Velocity Correlation of LFG Mixed Gas Using Numerical Simulation (수치계산을 이용한 LFG 혼합가스의 연소속도 상관식 도출)

  • Lee, Chang-Eon;Oh, Chang-Bo;Jung, Ik-San;Jeong, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.906-912
    • /
    • 2000
  • In this study, for the use of LFG, the burning velocities of LFG and LFG mixed fuels have been numerically analyzed. C3 reaction mechanism which consists of 92 species and 621 reaction was adopted in the calculation. The results show that the burning velocities of LFG and LFG mixed fuels are obtained as a function of $CH_4$ and LFG percentage at stoichiometric conditions. In addition, the correlations of burning velocities LFG and LFG mixed fuels were obtained over a wide range of the equivalence ratio. The comparison of burning velocity correlated from numerically calculated results with experimental ones shows good agreements. From these results, the suggested burning velocity correlations far LFG and LFG mixed fuels in this study can be applied to the practical utilization of LFG.

  • PDF

Estimation of Particulate Matter Emission Factors from Open Burning (노천소각에서 배출되는 먼지 배출계수 산정에 관한 연구)

  • Jung, No-El;Jo, Myeong-Ran;Heo, Sun-Hwa;Kim, Hyung-Chun;Park, Jung-Min;Lee, Dae-Gyun;Hong, Ji-Hyung;Lee, Suk-Jo;Lee, Yeong-Jae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.348-356
    • /
    • 2012
  • It is very important to investigate air pollutants and emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S. EPA and investigated concentrations of TSP, PM10, PM2.5 from woods and household wastes burning to calculate emission factors and build emission inventories. The results of experiment with 15 kg of woods and 3 kg of household wastes using the incineration simulator were as follows: in case of woods burning, TSP concentration was $66.4mg/m^3$, PM10 concentration was $28.4mg/m^3$, PM2.5 concentration was $17.9mg/m^3$, respectively; in case of household wastes burning, TSP concentration was $118.4mg/m^3$, PM10 concentration was $66.8mg/m^3$, PM2.5 concentration was $55.2mg/m^3$, respectively. Concentrations from household burning, as stated above, were higher than those from woods burning. Emission factors (EFs) for woods and household wastes burning were calculated as 2.45 and 6.75 g/kg for TSP, 0.86 and 5.45 g/kg for PM10, 0.78 and 4.81 g/kg for PM2.5, respectively. EFs of TSP, PM10, PM2.5 calculated from household wastes burning were higher than those of woods burning. When we added PM emissions from woods burning and household wastes burning to Korean National Emission Inventory named as Clean Air Policy Support System (CAPSS), CAPSS annual emissions of TSP, PM10, PM2.5 were increased by 0.08~0.26% (An increase rate for TSP, PM10, PM2.5 were 0.08~0.10%, 0.16~0.20% and 0.18~0.26%, respectively). Note that we assumed that the 1% of household wastes is emitted by open burning.

A Study on the Burning Velocity Correlation of LFG Mixed Fuel Using Numerical Analysis (수치계산을 이용한 LFG 혼합연료의 연소속도 상관식에 관한 연구)

  • Lee, Chang-Eon;O, Chang-Bo;Jeong, Ik-San
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1513-1522
    • /
    • 2000
  • In this study, the burning velocities of LFG and LFG mixed fuels have been numerically determined. C3 reaction mechanism involving 92 species and 621 reactions was adopted in the calculation. The computed burning velocities using C3 mechanism show good agreements with experimental data. Based on numerical results, the maximum burning velocities of LFG and LFG mixed fuels were correlated as a function of CH$_4$ and LFG component percentage at stoichiometric conditions. In addition, the correlations of burning velocities of LFG and LFG mixed fuels were obtained over a wide range of the equivalence ratio. The numerical results are well agreed with the burning velocity correlations. The burning velocity correlations for LFG and LFG mixed fuels suggested in this study can be applied to the practical utilization of LFG.

Increasing the burning rate of solid propellants (고체추진제의 연소속도 증진기술)

  • Kim, Jun-Hyung;Yim, Yoo-Jin;Kim, In-Chul;Park, Young-Chul;Seo, Tae-Seok;Yong, Jung-Jung;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.169-172
    • /
    • 2009
  • In this study, the current researches and the developing trend of the high burning rate solid propellants were briefly introduced and the effects of burning rate modifiers in the propellants on the combustion properties were reviewed. At the same time, bis(ethylenediamine)copper perchlorate(BECP) has been prepared as a burning rate modifier, and the burning characteristics were investigated in Butacene/AP propellants. The results showed that the metal complex, BECP, can increase remarkably the burning rate of high burning rate Butacene/AP propellants.

  • PDF

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

A Study on Estimation of Air Pollutants Emission from Agricultural Waste Burning (농업잔재물 노천소각에 의한 대기오염물질 배출량 산출에 관한 연구)

  • Kim, Dong Young;Choi, Min-Ae;Han, Yong-Hee;Park, Sung-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.167-175
    • /
    • 2016
  • In this study, we estimate air pollutants emission from agricultural waste burning. We investigated activities related to agricultural waste burning such as crop burning rates, location, and time by region. The average crop burning rates per square meter farmland of fruits, pulses, barleys, cereals, vegetables, and special crops were $273.1g/m^2$, $105.7g/m^2$, $7.4g/m^2$, $121.0g/m^2$, $290.7g/m^2$, and $392.9g/m^2$, respectively. We estimated air pollutants emissions with pre-developed emission factors. The estimated air pollutant emission of agricultural biomass burning were CO 148,028 ton/year, $NO_x$ 5,220 ton/year, $SO_x$ 11 ton/year, VOC 59,767 ton/year, TSP 21,548 ton/year, $PM_{10}$ 8,909 ton/year, $PM_{2.5}$ 7,405 ton/year, and $NH_3$ 5 ton/year. When these results compared with the entire emissions of national inventory (CAPSS), CO, VOC, $PM_{10}$ account for about 17.8%, 6.2%, 6.7% of the total, respectively.

A Study on the Growth and Burning of Anodic Oxide Films on Al6061 Alloy During Anodizing at Constant Voltages (Al6061 합금의 정전압 아노다이징 피막의 형성거동 및 버닝에 대한 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Song, Pungkeun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, growth and burning behavior of 6061 aluminum alloy was studied under constant anodic voltages at various temperatures and magnetic stirring rates in 20% sulfuric acid solution by analysing I-t curves, measuring thickness and hardness of aluminum anodic oxide (AAO) films, observations of surface and cross-sectional images of AAO films. AAO films were grown continuously at lower voltages than 18.5V but burning occurred when a voltage more than 19V was applied in 20% H2SO4 solution at 20±0.5℃ and 200 rpm of magnetic stirring. The burning was always related with an extremely large increase of anodic current density with anodizing time, suggesting that high heat generation during anodizing causes deteriorations of AAO films by chemical reaction with acidic solutions. The burning resulted in decreases of film thickness and hardness, surface color brightened and formation of porous defects in the AAO films. The burning voltage was found to decrease with increasing solution temperature and decreasing magnetic stirring rate. The decreased burning voltages seem to be closely related with increased chemical reactions between AAO films and hydrogen ions.

GHG-AP Integrated Emission Inventories and Per Unit Emission in Biomass Burning Sector of Seoul (서울시 생물성 연소부문 온실가스-대기오염 통합 인벤토리 및 배출원단위분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Biomass burning is known to be one of the main sectors emitting greenhouse gases as well as air pollutants. Unfortunately, the inventory of biomass burning sector has not been established well. We estimated greenhouse gas (GHG) and air pollution (AP) integrated emissions from biomass burning sector in Seoul during year 2010. The data of GHG and AP emissions from biomass burning, classified into open burning, residential fireplace and wood stove, meat cooking, fires, and cremation, were obtained from Statistics Korea and Seoul City. Estimation methodologies and emission factors were gathered from reports and published literatures. Estimated GHG and AP integrated emissions during year 2010 were $3,867tonCO_{2eq}$, and 2,320 tonAP, respectively. Major sources of GHG were forest fires ($1,533tonCO_{2eq}$) and waste open burning ($1,466tonCO_{2eq}$), while those of AP were meat cooking (1,240 tonAP) and fire incidence (907 tonAP). Total emissions by administrative district in Seoul, representing similar patterns in both GHG and AP, indicated that Seocho-gu and Gangseo-gu were the largest emitters whereas Jung-gu was the smallest emitter, ranged in $2{\sim}165tonCO_{2eq}$ and 0.1~8.31 tonAP. GHG emissions per $km^2$ showed different results from total emissions in that Gwanak-gu, Jungnang-gu, Gangdong-gu and Seodaemun-gu were the largest emitters, while Seocho-gu and Gangseo-gu were near-averaged emission districts, ranged in $0.2{\sim}21tonCO_{2eq}/km^2$. However, AP emissions per $km^2$ revealed relatively minor differences among districts, ranged in $2.3{\sim}6.1tonAP/km^2$.

The Relation of Three Burning Space And Nutrient & Defensive Qi (삼초(三焦)와 영위(營衛)의 상관성(相關性))

  • Mun, Seong-sik;Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.9 no.1
    • /
    • pp.105-112
    • /
    • 2000
  • Three burning space concentrating mainly on the text of ${\ll}NeiChing{\gg}$, we got this conclusion by looking at a longitudial perspective of three burning space function, nutrient & defensive qi creation, movement and numbers. 1. Longitudial movement is the law of the universe, by looking at oriental medicine by the thought of heaven and man unity we can tell that longitudial movement concept is used to analyze the physiology of our body. And we can look at our body in a cubic movement suck as top and bottom, left and right, outside and inside, internal and external, upward and downward movement. 2. In Nei Ching the concept of three burning space is seperated in to four different types of three burning space which are three burning space as a fu, three burning space as a water metabolism and excretion organ, and three burning space by its position. 3. nutrient & defensive qi's movement in the channel is the same as the twelve regular channels movement in our body, nutrient qi circulates the yang part twenty five during the day and circulates the ying part twenty five times during the night. Since channel functions corresponds with the sun, moon, and the stars the ups and downs of nutrient & defensive qi's property varies with the difference of the periods. 4. By comparing nutrient & defensive qi's production and property with three burning space's positional property, we can see that three burning space's positional property comes out from the longitudial movement of nutrient & defensive qi.

  • PDF