• Title/Summary/Keyword: Burner system

Search Result 285, Processing Time 0.024 seconds

A Study on the Compact Regenerative Burner Development (compact 축열 버너 개발 연구)

  • Dong, Sang-Keun;Lee, Eun-Kyoung;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.248-255
    • /
    • 2004
  • For the compactness of regenerative combustion, self regenerative combustion and embedding regenerator inside furnace are proposed. The Self Regenerative burner system was developed to enhance thermal efficiency and Low Nox emission. In the twin regenerative system, two burner heads are generally used for preheating and exhausting combustion mode. But self regenerative burner system use only single nozzle body for regenerative combustion. Also two kind of regenerator, internal and external type, were designed to operate conveniently in both large and small furnace. According to test result, the self regenerative combustion system gives strong internal exhaust gas recirculation that reduce NOx emission significantly. NOx was measured as 50ppm(5% O2, 1290C furnace temperature). Also it is found that the fuel saving rate due to the self regenerative burner system reach to 30-40%. Thus it can be concluded that self regenerative mild combustion system appears to provide a reasonable regenerative burner for compactness and high performance as compared with conventional twin regenerative burner system. Also in the RT Application , compact twin regenerative burner was developed with the help of embedding regenerator inside furnace.

  • PDF

Conceptional Design and Basic Experiment of the Burner for the Particulate Trap System (디젤 입자상물질 제거장치에 적용되는 버너의 설계 개념 및 기초 실험)

  • 박동선;김재업;이만복;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.50-60
    • /
    • 1996
  • We designed and developed the burner which would be adapted on the burner type diesel particulate trap system. The burner type particulate trap system consists of burner system to regenerate to ceramic filter, ceramic filter canister, system controller and etc. Many design factors which affect the performance of the burner system were discussed. We also investigated burner characteristics according to the operating parameters. Burned gas temperature could be controlled better by the 2nd air flow rate than the 1st one. As the space velocity increases, the axial and radial temperature gradients in the filter decreases.

  • PDF

Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner (슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Vector Fields and Mean Velocities - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 벡터장 및 평균속도에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2000
  • This paper represents the vector fields and three dimensional mean velocities in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. This experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component is focused in the narrow slits distributed radially on the edge of a cone type swirl burner, for that reason, there is some entrainment of ambient air in the outer region of the burner and the rotational flow can be shown in the inner region of the burner because mean velocity W is distributed about twice as large as mean velocity V due to inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the mean velocities are largely distributed near the outer region of burner within $X/R{\fallingdotseq}1.5$, hence, the turbulent characteristics are anticipated to be distributed largely in the center of this region due to the large inclination of mean velocity and swirl effect.

  • PDF

Conceptual designs and characteristic of the fuel handling and transfer system for 150 MWe PGSFR and 1400 MWe SFR burner reactor

  • Kang-Soo Kim;Jong-Bum Kim;Chang-Gyu Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4125-4133
    • /
    • 2022
  • KAERI (Korea Atomic Energy Research Institute) developed the conceptual design of PGSFR (Prototype Gen-IV Sodium Cooled Fast Reactor) and Burner Reactor. Since the reactor characteristics of the PGSFR and Burner Reactor are different, the shape, size and the arrangement of the main components in the reactors must be different. Therefore, the conceptual design for the fuel handling and transfer systems needs to be performed coinciding with the structure of the reactor. Especially, because a redan structure dividing hot and cold pool is installed in the reactor vessel, the conceptual design of the fuel handling and transfer system largely changes depending on the location of the redan structure. Various elements of the conceptual design and an integral arrangement for the fuel handling and transfer system were arranged according to the characteristics, sizes and shapes of the reactors. In this paper, the conceptual designs of the fuel handling and transfer system for PGSFR and Burner Reactor are described. Especially, an A-frame method is selected as the fuel handling and transfer system for the Burner Reactor, considering the layout of the internal structure. The tilt angle, diameter and length of A-frame is determined and the strength evaluation of the A-frame is performed.

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

Fundamental Study for Development of Pre-Heater for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 프리히터 개발을 위한 기초연구)

  • Kim, Dae-Hun;Kim, Seung-Hoon;Kwon, Soo-Ahn;Kim, Yongjoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • PURPOSES : To design a pre-heater for warm in-place recycling equipment, three different heating systems were evaluated to determine their thermal efficiency. METHODS: In this study, a $30cm{\times}30cm{\times}15cm$ wheel-tracking specimen was used to measure the inner temperature as a function of the heating system. The inner temperature of the specimen was measured with a data logger at the surface, and at depths of 1cm, 2cm, 3cm, 4cm, and 5cm. To evaluate the thermal efficiency, the researchers used three different types of equipment, namely, IR, a heating wire, and a gas burner. RESULTS: The IR heating system exhibits a higher level of performance than the others to achieve the target temperature at a depth of 5cm in the specimen. The gas burner system was capable of heating the surface to a temperature of up to $600^{\circ}C$. The other types, however, cannot heat the surface up to 600. The thermal efficiencies were measured based on the laboratory conditions. CONCLUSIONS: To find the most effective system for application to the development of a pre-heater for warm in-place recycling, various systems (IR, heating wire, gas burner) were examined in the laboratory. As a result, it was found that the hot plate of a gas burner system provides the highest temperature at the surface of the asphalt but, of all the systems, the IR system provides the best internal temperature increase rate. Furthermore, a gas burner can age the asphalt binder of the surface layer as a result of the high temperature. However, the gas burner cannot attain the target temperature at 5cm. The IR system, on the other hand, is effective at increasing the internal temperature of asphalt.

The Integration of Domestic Burner Management System for Thermal Power Plant and Hardware Explanation (화력전소용 버너관리 시스템 구성과 하드웨어 설명)

  • Shin, Mahn-Su;Kim, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.264-267
    • /
    • 2001
  • In this paper, we are trying to think over the integration of domestic burner management system for thermal power plant. The detailed contents are the power plant system overview and the integration of system and the hardware explanation and changing the burner management system in the local equipments.

  • PDF

Composition of Operation Window in Domestic Burner Management System for Thermal Power Plant and Software Explanation (화력전소용 버너관리 시스템 운전화면 구성과 Software 설명)

  • Shin, Mahn-Su;Kim, Byung-Chul;Kang, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.323-326
    • /
    • 2001
  • In this Paper, we are trying to think over the operation window of application to a domestic burner management system and the softwares. The detailed contents are the power plant system overview and the integration of operation window and the software[man-machine interface software and logic editing software] digest and the difficulty in changing the burner management system.

  • PDF

[ NOX ] Emission Characteristics in Radiant Tube Burner with Oscillating Combustion Technology (맥동연소기술이 접목된 복사관 버너에서의 NOX 배출 특성)

  • Cho, Han-Chang;Cho, Kil-Won;Kim, Hoo-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • An experimental study was carried out in a small-scale test furnace to investigate the performance, such as $NO_X$ emission, enhancement of heat transfer, uniformity of temperature, and etc, of oscillating combustion applied in radiant tube burner system. A premixed type burner and a cyclic oscillating control valve were designed and used. The fuel, used commercial LPG in this study, was only oscillated using the cyclic oscillating control valve. As oscillating combustion was applied in radiant tube burner system, it is found that $NO_X$ emission, compared to no oscillation, could be reduced by 38% at $90{\sim}120rpm\;(1.5{\sim}2.0Hz)$. However, as oscillating frequency was increased, effect of abatement of $NO_X$ emission is gradually reduced. From the measurement of furnace heating time from $100^{\circ}C$ to $720^{\circ}C$, heat transfer is increased by 11.5% at the oscillation of 120rpm. Temperature distribution of radiant tube surface is more uniform at oscillation of 120rpm with decrease of the peak temperature and increase of low temperature. From these results, it is confirmed that oscillating combustion is useful in radiant tube burner system.