• Title/Summary/Keyword: Burndown

Search Result 4, Processing Time 0.018 seconds

Herbicidal Activities of Essential Oils from Pine, Nut Pine, Larch and Khingan Fir in Korea (국내산 소나무, 잣나무, 낙엽송, 분비나무 정유의 제초활성)

  • Yun, Mi Sun;Cho, Hae Me;Yeon, Bo-Ram;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • The objective of this research was to understand herbicidal activity of essential oils isolated from leaves of pine (Pinus densiflora), nut pine (Pinus koraiensis), larch (Larix kaempferi) and khingan fir (Abies nephrolepsis) in Korea. In a seed bioassay, essential oils of nut pine, larch and khingan fir inhibited the growth of rapeseed (Brassica napus) seedlings by 50% at 4,766, 1,865, $5,934{\mu}g\;ml^{-1}$, respectively, however, that of pine did not show any herbicidal effect. In a green house experiment, fall panicum, Southern crabgrass, sorghum, barnyardgrass, quackgrass, black nightshade, Indian jointvetch, velvet leaf, and Japanese morningglory were controlled in 24 hours by the foliar application of 10% essential oils from pine, nut pine, larch and khingan fir. The treated plant parts showed burndown effect, however, new shoots appeared 3 days after treatment. Results of GC-MS analysis showed that essential oils from pine, nut pine, larch and khingan fir contained 16, 25, 25, and 16 compounds, respectively, with hydrocarbons, alcohols, ketones, and esters. The major compounds of the essential oils were 3-carene, bornyl acetate, camphene, limonene, ${\alpha}$-pinene, ${\beta}$-pinene and ${\beta}$-phellandrene.

Herbicidal Activity and KAPAS Inhibition of Juglone with Potential as Natural Herbicide (천연 Naphthoquinone계 Juglone의 KAPAS 저해 및 제초활성 특성)

  • Choi, Jung-Sup;Lim, Hee-Kyung;Seo, Bo-Ram;Kim, Jin-Seog;Choi, Chun-Whan;Kim, Young-Sup;Ryu, Shi-Yong
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • The potential of juglone a plant naphthoquinone as a natural herbicide on new target, 7-keto-8-amino pelargonic acid synthetase (KAPAS) in the early step of biotin biosynthesis pathway, was performed in vitro and in vivo. Juglone effectively inhibited KAPAS activities in vitro and the $IC_{50}$ was $9.5{\mu}M$. Foliar application of juglone showed very good herbicidal activity to the eight-tested weed species. Among them, Solanum nigrum was completely controlled at a concentration of $250{\mu}g\;mL^{-1}$ with main symptoms of desiccation or burndown. Digitaria sanguinalis and Aeschynomene indica were also sensitive to juglone treatment. All eight weed species were controlled by 90~100% at a concentration of $500{\mu}g\;mL^{-1}$. However, soil application of juglone to Digitaria sanguinalis did not show any herbicidal symptoms. Cellular leakage from cucumber leaf squares treated with juglone increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the juglone. Our results suggest that the juglone is a possible environmental friendly herbicide candidate with a new target KAPAS inhibiting activity.

Herbicidal Properties of 5,8-dihydroxy-1,4-naphthoquinone and Their Possible Mode of Action (천연물 유래 5,8-dihydroxy-1,4-naphthoquinone의 살초특성과 작용기구)

  • Choi, Jung-Sup;Kim, Ji-Yeon;Seo, Bo-Ram;Ko, Young-Kwan;Cha, Mi-Ran;Kim, Young-Sup;Ryu, Shi-Yong;Hwang, In-Taek
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.250-259
    • /
    • 2011
  • This study was conducted to assess the possibility of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) as a environmental friendly herbicide candidate. Foliar application of DHNQ showed excellent herbicidal effect to the 3 grasses and 5 broad-leaved weeds. Among them, Digitaria sanguinalis and Solanum nigrum were completely controlled by $250{\mu}g\;mL^{-1}$ of DHNQ with main symptoms of desiccation or burndown within 24 hours. Aeschynomene indica was also sensitive to DHNQ treatment. All of the eight weed species were controlled by 90~100% at a concentration of $1000{\mu}g\;mL^{-1}$. However, soil application of DHNQ to Digitaria sanguinalis did not show any herbicidal symptoms. DHNQ strongly inhibited KAPAS activities in vitro and the $IC_{50}$ was $4.4{\mu}M$. Cellular leakage from cucumber leaf squares treated with DHNQ increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the DHNQ. According to above results, DHNQ is a good natural herbicide candidate having a new target KAPAS, which is involved in biotin biosynthesis pathway, with environmental friendly.

Identification of Streptomyces scopuliridis KR-001 and Its Herbicidal Characteristics (Streptomyces scopuliridis KR-001의 분리 동정 및 잡초 방제효과)

  • Lee, Boyoung;Kim, Jae Deok;Kim, Young Sook;Ko, Young Kwan;Yon, Gyu Hwan;Kim, Chang-Jin;Koo, Suk Jin;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • With increasing environmental issues from synthetic chemical herbicides, microbe-originated herbicides could be a fascinating alternative in current agriculture. We isolated Streptomyces strains that produced herbicidal active metabolite(s) against a grass weed Digitaria sanguinalis. According to the result from 16S rDNA sequence comparison with the close strains, the best isolate (Code name MS-80673) was identified as Streptomyces scopuliridis KR-001. The closest type strain was Streptomyces scopuliridis RB72 which was previously reported as a bacteriocin producer. The optimal culture condition of S. scopuliridis KR-001 was $28^{\circ}C$, pH 7.0 and culture period 4 to7 days. Both of soil and foliar application of the crude culture broth concentrate was effective on several troublesome or noxious weed species such as a Sciyos angulatus in a greenhouse and field condition. Phytotoxic symptoms of the culture broth concentrate of S. scopuliridis KR-001 by foliar application were wilting and burndown of leaves, and stems followed by discoloration and finally plant death. In crops such as rice, wheat, barley, hot pepper and tomato, growth inhibition was observed. These results suggest that the new S. scopuliridis KR-001 strain producing herbicidal metabolites may be a new bio-herbicide candidate and/or may provide a new lead molecule for a more efficient herbicide.