Browse > Article
http://dx.doi.org/10.5660/KJWS.2011.31.3.250

Herbicidal Properties of 5,8-dihydroxy-1,4-naphthoquinone and Their Possible Mode of Action  

Choi, Jung-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Kim, Ji-Yeon (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Seo, Bo-Ram (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Ko, Young-Kwan (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Cha, Mi-Ran (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Kim, Young-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Ryu, Shi-Yong (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Hwang, In-Taek (Green Chemistry Division, Korea Research Institute of Chemical Technology)
Publication Information
Korean Journal of Weed Science / v.31, no.3, 2011 , pp. 250-259 More about this Journal
Abstract
This study was conducted to assess the possibility of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) as a environmental friendly herbicide candidate. Foliar application of DHNQ showed excellent herbicidal effect to the 3 grasses and 5 broad-leaved weeds. Among them, Digitaria sanguinalis and Solanum nigrum were completely controlled by $250{\mu}g\;mL^{-1}$ of DHNQ with main symptoms of desiccation or burndown within 24 hours. Aeschynomene indica was also sensitive to DHNQ treatment. All of the eight weed species were controlled by 90~100% at a concentration of $1000{\mu}g\;mL^{-1}$. However, soil application of DHNQ to Digitaria sanguinalis did not show any herbicidal symptoms. DHNQ strongly inhibited KAPAS activities in vitro and the $IC_{50}$ was $4.4{\mu}M$. Cellular leakage from cucumber leaf squares treated with DHNQ increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the DHNQ. According to above results, DHNQ is a good natural herbicide candidate having a new target KAPAS, which is involved in biotin biosynthesis pathway, with environmental friendly.
Keywords
5,8-dihydroxy-1,4-naphthoquinone; environmental safer herbicide; 7-keto-8-aminopelargonic acid synthetase; rescue effect; post-emergence treatment;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Kenyon, W. H., S. O. Duke and K. C. Vaughn. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucumber cotyledon discs. Pestci. Biochem. Physiol. 24:240-250.   DOI
2 Kim, K. W., J. G. Shin and J. S. Kim. 2002. Isolation and identification of plant growth retardants from Atractylodes japonica Rhizome. Korean J. Weed Sci. 22(4):385-391.   과학기술학회마을
3 Kim, H. Y., H. J. Choi, D. S. Kim, S. J. Heo and Songmun Kim. 2003. Isolation of new herbicidal compound chrysophanic acid from red sorrel (Rumex acetosella L.). Korean J. Weed Sci. 23(4):301-309.   과학기술학회마을
4 Lee, H. B., C. J. Kim, J. S. Kim, K. S. Hong and K. Y. Cho. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycetes strain Streptomyces sp. 8E- 12. Letters in Applied Microbiol. 36:387-391.   DOI
5 Lederer, B., T. Fujimori, Y. Tsujino, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids II : peroxidation and membrane effects. Pestci. Biochem. Physiol. 80:151-156.   DOI
6 Lydon, J., and S. O. Duke. 1999. Inhibition of glutamine synthesis. In : Singh BK (ed.), Plant Amino Acids : Biochemistry and Biotechnology. Marcel Dekker, New York, pp. 445-464.
7 Choi, J. S., H. Y. Song, S. J. Cho, M. S. Park, N. J. Park, D. H. Lee, H. G. Hahn and I. T. Hwang. 2007. Mechanism action of KAPAS inhibitor on new herbicidal target site. Korean J. Weed Sci. 30(Sub. 2):39-40.
8 Choi, J. S., C. M. Ryu, B. S. Han, D. H. Lee and I. T. Hwang. 2011. Biochemical crop protecting agents for LOHAS. Korean Industrial Chemistry News 24(4):29-40.
9 Copping, L., and S. O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Sci. 63:524-554.   DOI
10 Duke, S. O., H. K. Abbas, T. Amagasa and T. Tanaka. 1996. Phytotoxins of microbial origin with potential for use as herbicides, in Copping. LG (ed.), Crop Protection Agents from Nature : Natural Production and Analogues. Critical Reviews on Applied Chemistry, Vol. 35. Society for Chemical Industries, Cambridge, UK. pp. 82-113.
11 Fukuda, M., Y. Tsujino, T. Fujimori, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids I : effect on cell constituents. Pestci. Biochem. Physiol. 80:143-150.   DOI
12 Goncalves, S., M. Ferraz and A. Romano. 2009. Phytotoxic properties of Drosophyllum lusitanicum leaf extracts and its main compound plumbagin. Sci. Hortic. 122:96-101.   DOI
13 Hiscox, J. D., and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57:1332-1334.   DOI
14 Hong, S. Y., J. S. Choi and S. M. Kim. 2011. Herbicidal activity of essential oil from palmarosa (Cymbopogon martini). Korean J. Weed Sci. 31(1):96-102.   DOI
15 Hwang, I. T., D. H. Lee, J. S. Choi, Y. K. Min, T. J. Kim, J. H. Ko, T. H. Kim, Y. S. Park, K. Y. Cho and S. W. Lee. 2003. Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide. Patent No. PCT/KR2003/001301.
16 Ashkenazi, T., A. Widberg, A. Nudleman, V. Wittenbach and D. Flint. 2005. Inhibitors of biotin biosynthesis as potential herbicides : Part 2, Pestci. Manag. Sci. 61(10):1024-1033.   DOI
17 Abell, L. M. 1996. Biochemical approaches to herbicide discovery : advances in enzyme target identification and inhibitor design. Weed Sci. 44:734-742.
18 Alban, C., D. Job and R. Dource. 2000. Biotin metabolism in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:17-47.   DOI
19 Allan, E. J., and M. W. Fowler. 1985. Biologically active plant secondary metabolites perspectives for the future. Chemistry and Industry pp. 408-410.
20 Bainard, L. D., and M. B. Isman. 2006. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54:833-837.   DOI
21 Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig and H. Zahner. 1972. Stoffwechselproduct von Mikroorganismen 98. Mitteilung(1) Phosphinothricin und phosphinothrithyl-alanyl-alanin. Helvetica Chimica Acta. 55:224-239.   DOI
22 Cho, K. M., X. H. An, J. K. Chon, H. S. Kim and J. C. Chun. 2010. Foliage contact herbicidal activity of dehydrocostus lactone derived from Saussurea lappa. Korean J. Weed Sci. 30(4):421-428.   과학기술학회마을   DOI
23 Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425-431.   DOI
24 Satoh, A., T. Murakami, H. Takebe, S. Imai and H. Seto. 1993. Industrial development of bialaphos, a herbicide from metabolites of Streptomyces hygropicus SF 1293. Actinomyceteologica 7:128-132.   DOI
25 Schultz, A., O. Art, P. Beyer and H. Kleing. 1993. SC-0051, a 2-benzoylcyclo hexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyrubate dioxygenase. FEBS Lett. 316:162-16637.
26 Tachibana, T., T. Watanabe, Y. Sekizawa and T. Takematsu. 1986. Inhibition of glutamine synthetase and quantative changes of free amino acids in shoots of bialaphos treated Japanese barnyard millet. Journal of Pesticide Sci. 11:27-31.   DOI
27 Meinke, D. W. 1985. Embryo-lethal mutants of Arabidopsis thaliana : analysis of mutants with a wide range of lethal phases. Theor. Appl. Genet. 72:543-552.
28 Uddin, M. R., O. J. Won and J. Y. Pyon. 2010. Herbicidal effects and crop selectivity of sorgoleone, a sorghum root exudate under greenhouse and field conditions. Korean J. Weed Sci. 30(4):412-420.   과학기술학회마을   DOI
29 Webster, S. P., D. Alexeev, D. J. Campopiano, R. M. Watt, M. Alexeeva, L. Sawyer and R. L. Baxter. 2000. Mechanism of 8-Amino-7-oxononanoate synthase : spectroscopic, kinetic, and crystallographic studies. Biochemistry 39:516-528.   DOI
30 Wolfang, L., F. Bornke, A. Reindl, T. Ehrhardt, M. Stitt and U. Sonnewald. 2004. Target-based discovery of novel herbicides. Curr. Opin. Plant Biol. 7(2):219-225.   DOI
31 Meyer, J. J. M., F. Van der Kooy and A. Joubert. 2007. Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. S. Afr. J. Bot. 73:654-656.   DOI
32 Patton, D. A., A. L. Schetter, K. H. Franzmann, K. Nelson, E. R. Ward and D. W. Meinke. 1998. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol. 116:935-946.   DOI
33 Putnam, A. R. 1988. Allelochemicals from plant as herbicides. Weed Tech. 2:510-518.   DOI
34 Pillmoor, J. B., S. D. Lindell, G. G. Briggs and K. Wright. 1995. The influences of molecular mechanisms of action on herbicide design. In : N. N. Ragsdale, P. C. Kearney, J. R. Plimmer (Eds). Processing of the Eighth of the English International Congress of Pesticide Chemistry, America Chemical Society, Washington, DC, pp. 292-303.
35 Ploux, O., and A. Marquet. 1992. The 8-amino-7-oxopelargonate synthase from Bacillus sphaericus. Purification and preliminary characterization of the cloned enzyme overproduced in Escherichia coli. Biochem. J. 283:327-331.   DOI
36 Prisbylla, M. P., B. C. Onisko, J. M. Shribbs, D. O. Adams, Y. Liu, M. K. Ellis, T. R. Hawkes and L. C. Mutter. 1993. The novel mechanism of action of the herbicidal triketones. Proc. Brighton Crop Prot. Conf.-Weeds 2:731-738.
37 Quarles, W. 1999. Non-toxic weed control in the lawn and garden. Common Sense Pest Cont. Quarter Summer. pp. 4-14.
38 Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press, Orlando, Florida, pp. 266-291.
39 Riches, C. R., J. C. Casely, B. E. Valverde and V. M. Down. 1996. Resistance of Echinochloa colona to ACCase inhibiting herbicides. Proc. International Symposium on Weed and Crop Resistance to Herbicides. EWRS, Cordoba, Spain. pp. 14-16.
40 Hwang, I. T., J. S. Choi, H. Y. Song, S. J. Cho, H. K. Lim, N. J. Park and D. H. Lee. 2010. Validation of 7-keto-8-aminopelargonic acid synthase as a potential herbicide target with lead compound triphenyltin acetate. Pestci. Biochem. Physiol. 97:24-31.   DOI
41 Jang, H. J., and K. W. Kim. 2010. Isolation of herbicidal compound from bulbs of Lycoris chinensis var. sinuolata. Korean J. Weed Sci. 30(4):437-444.   과학기술학회마을   DOI