• Title/Summary/Keyword: Buried-Pipe

Search Result 284, Processing Time 0.025 seconds

A Study on the Development of Remotely CP Potential Measuring Method by using Vehicle (차량을 이용한 원격전위 측정방법 개발에 관한 연구)

  • Ryou, Young-Don;Jo, Young-Do;Kim, Jin-Jun;Seo, Min-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.64-71
    • /
    • 2016
  • According to the urban gas business law, electrical corrosion prevention measures shall be installed to the buried gas pipelines and the pipe-to-soil potentials should be measured at the test box at least once a year. Most of the test boxes installed in urban area are usually located on the road where the vehicle travels, therefore, it is difficult to measure the CP potentials at the test boxes. That is, we need traffic control when carrying out the measurement of the CP potentials on daytime when the traffic is heavy, or we have to measure the potentials in the late night when the traffic is light. To solve these difficulties, we have studied remotely CP potential measuring method by using the patrol car. We have installed solid reference electrodes and data loggers under the test boxes on the site and received the CP potentials from the data loggers when the vehicle moves. It was difficult to send and receive the data because the data logger was located under the ground. We have applied 3 different method including 2 antenna systems to achieve best effective way in receiving the data. We have found the remote CP measuring method by using a car can save more 20 times of measuring time than conventional measuring methods.

Sewer CCTV Inspection Prioritization Based on Risk Assessment (위험도 기반의 하수관로 CCTV 조사 우선순위 결정 연구)

  • Son, Jooyoung;Lee, Jaehyun;Oh, Jeill
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.585-592
    • /
    • 2017
  • Most sewer lines buried in the city are likely to be collapsed due to serious aging. Also, due to the high concentration of development and high population density and traffic, the collapse of the sewer will cause enormous social and economic damage. Therefore, proactive maintenance is required to prevent accidents caused by deteriorated sewer pipe. In order to utilize limited budget effectively, risk-based prioritization methods should be proposed that simultaneously consider the consequence of failure and the probability of failure. In this study, the method of risk-based prioritization of sewer was examined by reviewing various cases of overseas studies and applied to the urban sub-catchment. First, the impact factors that can be secured through the sewer GIS DB in Seoul were derived, and the weight, sub-criteria, and impact score of each impact factor were determined and the consequence of failure was calculated by weight sum method. In addition, the probability of failure was calculated by dividing the service life by the estimated useful life, and the consequence of failure and the probability of failure were classified into five grades by the Jenks natural breaks classification method. The prioritization method was applied to sub-catchment in the Seoul to derive a risk matrix and a risk grade. As a result, 26% of all subjects were selected as the inspection priority subjects with 4-5 risk grade. Therefore, using the risk-based CCTV prioritization methodology, it will be possible to systematically determine the objects that need investigation first.

Implementation of Constructor-Oriented Visualization System for Occluded Construction via Mobile Augmented-Reality (모바일 증강현실을 이용한 작업자 중심의 폐색된 건축물 시각화 시스템 개발)

  • Kim, Tae-Ho;Kim, Kyung-Ho;Han, Yunsang;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.55-68
    • /
    • 2014
  • Some infrastructure these days is usually constructed under the ground for it to not interfere the foot-traffic of pedestrians, and thus, it is difficult to visually confirm the accurate location of the site where the establishments must be buried. These technical difficulties increase the magnitude of the problems that could arise from over-reliance on the experience of the worker or a mere blueprint. Such problems include exposure to flood and collapse. This paper proposes a constructor-oriented visualization system via mobile gadgets in general construction sites with occluded structures. This proposal is consisted with three stages. First, "Stage of detecting manhole and extracting features" detects and extracts the basis point of occluded structures which is unoccluded manhole. Next, "Stage of tracking features" tracks down the extracted features in the previous stage. Lastly, "Stage of visualizing occluded constructions" analyzes and synthesizes the GPS data and 3D objects obtained from mobile gadgets in the previous stages. This proposal implemented ideal method through parallel analysis of manhole detection, feature extraction, and tracking techniques in indoor environment, and confirmed the possibility through occluded water-pipe augmentation in real environment. Also, it offers a practical constructor-oriented environment derived from the augmented 3D results of occluded water-pipings.

A Study on the Development of Intelligent Markup Indicator (IMI) Technology for Underground Facilities Management Using IoT (IoT를 이용한 지하매설물관리용 지능형표지기(IMI) 기술개발에 관한 연구)

  • Kim, Tai-Dal
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • Geographic Information System The geographic information system (GIS) has been limited to the government and some public sectors. Recently, the market has been diversified by combining with other areas such as mobile and CRM (Customer Relationship Management). The development direction of GIS technology in the 21st century is Web GIS, 3D GIS, mobile GIS, LBS, etc. as general technology for GIS application system development and spatial information service. In this study, we developed a new concept marking nail (a marking nail with built - in intelligent storage memory device) from the function of simple positioning of a marking nail related to a previously used underground item,, Burial depth, pipe thickness, piping material, management agency, contractor, contact, etc.) and store it in DB server, if necessary.Make it available in the right place. Through this research, it is possible to prevent and minimize various accidents caused by irregular excavation works, etc., and to provide information for establishing countermeasures related to sink holes. In order to provide systematic and reliable information on underground burial management, it was proposed to input information conveniently in the field, and the purpose was to reduce the incidence of buried underground pipes absolutely.

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

A new approach to enhancement of ground penetrating radar target signals by pulse compression (파형압축 기법에 의한 GPR탐사 반사신호 분해능 향상을 위한 새로운 접근)

  • Gaballah, Mahmoud;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2009
  • Ground penetrating radar (GPR) is an effective tool for detecting shallow subsurface targets. In many GPR applications, these targets are veiled by the strong waves reflected from the ground surface, so that we need to apply a signal processing technique to separate the target signal from such strong signals. A pulse-compression technique is used in this research to compress the signal width so that it can be separated out from the strong contaminated clutter signals. This work introduces a filter algorithm to carry out pulse compression for GPR data, using a Wiener filtering technique. The filter is applied to synthetic and field GPR data acquired over a buried pipe. The discrimination method uses both the reflected signal from the target and the strong ground surface reflection as a reference signal for pulse compression. For a pulse-compression filter, reference signal selection is an important issue, because as the signal width is compressed the noise level will blow up, especially if the signal-to-noise ratio of the reference signal is low. Analysis of the results obtained from simulated and field GPR data indicates a significant improvement in the GPR image, good discrimination between the target reflection and the ground surface reflection, and better performance with reliable separation between them. However, at the same time the noise level slightly increases in field data, due to the wide bandwidth of the reference signal, which includes the higher-frequency components of noise. Using the ground-surface reflection as a reference signal we found that the pulse width could be compressed and the subsurface target reflection could be enhanced.

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.