• Title/Summary/Keyword: Buoyant flow

Search Result 73, Processing Time 0.026 seconds

A Novel High Rate Flocculator/Filter in Water and Wastewater Treatment (상하수처리를 위한 새로운 고효율 응집/여과 장치)

  • Vigneswaran, S.;Ngo, H.H.;Kwon, Dae-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.149-154
    • /
    • 2005
  • Conventionally used flocculation tanks require large space and high energy requirement for mixing. Static flocculators using gravel bed filter operate at a lower flow rate ($5-10m^3/m^2{\cdot}h$). Further, the cleaning of this system is difficult. A novel high rate static flocculator/filter developed at UTS packed with buoyant media such as polystyrene, polypropylene has been found to operate at higher filtration rates (30-45 $5-10m^3/m^2{\cdot}h$). They can easily be cleaned with minimal energy. Detailed experiments conducted with an artificial kaolin clay solution show that buoyant media is an excellent static flocculator in producing uniform filterable microflocs (12-15 m) even when it is operated at a high rate of 30-40 m/h. Detailed filtration experiments were conducted in a wastewater treatment plant to treat the biologically treated effluent with a floating media of depth of 120 cm. This filter was able to remove majority of phosphorus and remaining solids. It reduced significantly the fecal coliforms and fecal streptoccoci, thus requiring less amount of chlorine for disinfection. The advantage of this system is the low energy and water requirement for cleaning of filter bed. The periodic backwash adopted 30 seconds air and water and 30 seconds water cleaning every 90 minutes filter operation. Thisis equivalent to 1-2% of filtered water production. Mechanical cleaning system on the other hand, requires very low energy requirement (<1% of filtered water production).

Plane buoyant jet in cross flow (가로흐름에 방류되는 평면부력젤)

  • Han, Mun-U;Yoon, Tae-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.89-97
    • /
    • 1987
  • 가로흐름에 방류되는 연직평면부력젤의 젤중심선경로와 온도분포를 실험자료와 기본방정식으로부터 유도된 적분식에 의하여 해석한다. 기본방정식으로부터 적분식의 유도는 상사법칙과 특성길이를 도입하여 연직상향 및 수평방향흐름영역에 대한 차원해석을 하였고, 실험은 속도비(R=Wo/Ua)와 방류밀도Froude수를 변화시키면서 각각에 따른 젤중심선경로와 온도분포를 획득하였다. 속도비 R과 방류밀도Froude수 Fo에 따라 부력젤의 흐름특성은 달라지게 되며, 초기조건(운동량및 부력)에관계없이 부력젤은 항상 운동량지배영역이 존재함을 알 수 있었고 적분식에 의한 역법칙(power law)과 실험 자료는 대체로 일치된결과를 나타내었다.

  • PDF

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

Non-uniform wall temperature effect of the flow and heat transfer of a hot circular air jet impinging on a circular cylinder (비균일 벽면 온도가 원형 실린더에 충돌하는 고온 제트 유동 및 열전달에 미치는 영향)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.882-890
    • /
    • 1997
  • A buoyant jet flow impinging on a circular cylinder is investigated including heat conduction through the cylinder. Temperature and flow fields are obtained by an iterative method, and the effects of the non-uniform wall temperature on the flow and heat transfer are analyzed. Effects of three-dimensionality and the traversing of the jet are also included. Nusselt number over the cylinder surface for the conjugate case is relatively small as compared with the constant wall temperature case due to the small temperature gradient. As the conductivity of the cylinder becomes lower, Nusselt number decreases due to the reduced temperature gradient. Increasing jet traversing speed causes the surface temperature of the cylinder to decrease, which increases local Nusselt number over the surface.

Shore Attachement of Jet in Flowing Environment (흐름수역에서 ?흐름의 연안귀환)

  • Yoon, Tae Hoon;Yook, Woon Soo;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.43-52
    • /
    • 1992
  • The shore attachment of jet in a cross flow is analysed by experiments and dimensional analysis. The jet flow is discharged with the same depth as that of the cross flow through a side channel perpendicular to the cross flow through a side channel perpendicular to the cross flow. For a momentum jet, nondimensional attachment length and height are dependent on nondimensional characteristic length $I_m/W$. For a buoyant jet, nondimensional attachment length is affected by $I_b/I_md$ and nondimensional temperature distribution is a function of $x/I_b$ and they all can be predicted as power laws. The shore attachment condition can be specified by velocity ratio R.

  • PDF

Simulation of Biocube- Fluid Mixture Using Combined Formulation

  • Choi, Hyoung-Gwon;Lee, Myeong-Ho;Yong, Ho-Taek
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1418-1427
    • /
    • 2004
  • Combined formulation developed for the fluid-particle mixture is introduced to simulate the biocube-fluid mixture flow, which is utilized for sewage disposal. Some tricky boundary conditions are introduced in order to simulate the effect of screen wall and air bubble, which is injected from the bottom of sewage reservoir. It has been shown that a circulated flow pattern, which was observed in experiment, is reproduced from the present numerical simulation. Furthermore, the effect of biocube density on the distribution pattern of biocube is also studied. It has been shown that a biocube whose density is slightly smaller than that of surrounding fluid or neutrally buoyant one are optimal for the uniform distribution of biocube.

A Numerical K-e Two-Equation Model for Investigating the Hydrodynamics of Flow in Two-Dimensional Density Fields (이차원밀도장에서의 유동을 해석하기 위한 수치모델의 개발)

  • 허재영
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.61-71
    • /
    • 1993
  • To investigate the structure of internal flow hydrodynamically, the complete vertical equation of motion should be assembled into the model. In the present study a numerical simulation model not hydrodynamically approximated is established. From the comparison of the predicted results with the computed results from k-$ two equation turbulence model by Huh et. al.(1991)and the experimental data by Nakatsuji(1984), the vertical acceleration and its effects on the development of buoyant surface jets are evaluated quantitatively.

  • PDF

Hydrodynamic interaction between two cylinders in planar shear flow of viscoelastic fluid

  • Jung, Hyun-Wook;Daejin Won;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.203-207
    • /
    • 2002
  • Particle-particle interaction is of great importance in the study of suspension rheology. In this research we have investigated the hydrodynamic interaction between two identical cylinders in viscoelastic fluids numerically as a model problem for the study of viscoelastic suspension. We confine two neutrally buoyant cylinders between two parallel plates and impose a shear flow. We determine the migration velocity of two cylinders. The result shows that cylinders move toward or away from each other depending upon the initial distance between them and that there is an equilibrium distance between two cylinders in viscoelastic fluids regardless of the initial distance. In the case of Newtonian fluid, there is no relative movement as expected. The results partly explain the chaining phenomena of spherical particles in shear flows of viscoelastic fluids.

Behavior of Two Dimensional Density Flow into a Reservoir with Sloping Bottom (경사정지수역으로 유입되는 2차원 밀도류의 거동)

  • 윤태훈;전시영
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 1987
  • The behavior of negative buoyant flow into a reservoir with sloping bottom is analysed by numerical solution technique of the governing equations composed of continuty, momentum and constituent transport equation. The stable plunge point and maximum travel distance are found to be dependent on the bottom slope of reservoir as well as inflow densimetric Froude number, $Fr_e$. They are also related closely to a vortex formed just downstream from the plunge point and above the underflow. The plunge depth was shown to be a function of th bottom slope and $Fr_e$. The plunge depths obtained in this numerical study agree relatively well with published data and theoretical studies, and its predictive equation is derived.

  • PDF

Temperature Structure in Regulating Ponds (조정지에서의 수온구조)

  • 윤태훈;전시영
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.247-252
    • /
    • 1987
  • The negative buoyant flow into and through a regulating pond is analysed by numerical scheme. The controlling parameter of density current in the pond is found to be the inflow densimetric Froude number, $Fr_e$. Two vortices are formed and notable at the right corner and above the sunken flow in th pond. For given inflow characteristics, the required outflow temperature, the combination of dimensions of the pond and the residence time of the inflow in the pond are determined.

  • PDF