• Title/Summary/Keyword: Buoyancy can

Search Result 205, Processing Time 0.026 seconds

The Effect of Buoyancy Orientation on Flow Structures in Turbulent Channel Flow using DNS

  • El-Samni Osama;Yoon HyunSik;Chun Ho Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.

A Study on the Estimation of the Minimum Buoyancy for the Respiration of a Drowning Person (익수자의 호흡이 가능한 최소 부력 추정에 관한 연구)

  • Yim, Jeong-Bin;Park, Deuk-Jin;Kang, Yu Mi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.820-828
    • /
    • 2017
  • Tools and equipment that can provide buoyancy for a drowning person are important for saving lives. The purpose of this study was to estimate the minimum amount of gas needed and the buoyancy value in newton units required to generate the minimum buoyancy determined to be sufficient for keeping the head of a drowning person above the water's surface to allow for respiration for at least 1 minute. A buoyancy experiment was carried out with a long rubber balloon injected with carbon dioxide gas, and a buoyancy measurement experiment was performed on six college students. The degree of buoyancy was measured using a 5-point scale, and the statistical value of the measured data was analyzed to estimate minimum buoyancy. As a result, 8 grams of carbon dioxide were determined to satisfy minimum buoyancy conditions with a confidence level of 72%, and buoyancy was calculated to be 44.66 newtons. 12 grams of carbon dioxide met the minimum buoyancy conditions with a confidence level of 100%, and buoyancy was calculated to be 66.99 newtons. This study is expected to contribute to the development of low cost, easy-to-carry minimum buoyancy aids.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

THERMALLY DRIVEN BUOYANCY WITHIN A HOT LAYER DUE TO SPRINKLER OPERATION

  • Nyankina, K.;F Turan, O.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.625-632
    • /
    • 1997
  • A two-dimensional zone-like model is developed to predict the interaction between hot gas layer and water droplets after sprinkler activation. The model combines the motion equations for each droplet with heat and mass transfer between the gas and water. The results indicate that negative buoyancy in the hot layer can only be obtained if the initial temperature profile is uniform. If an experimental profile Is used instead, positive buoyancy results. This conclusion has been confirmed with experimental data.

  • PDF

Dynamic Modeling and Motion Analysis of Unmanned Underwater Gliders with Mass Shifter Unit and Buoyancy Engine (이동질량장치와 부력엔진을 포함한 무인 수중글라이더의 동역학 모델링 및 운동성능 해석)

  • Kim, Donghee;Lee, Sang Seob;Choi, Hyeung Sik;Kim, Joon Young;Lee, Shinje;Lee, Yong Kuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.466-473
    • /
    • 2014
  • Underwater gliders do not have any external propulsion systems that can generate and control their motion. Generally, underwater gliders would obtain a propulsive force through the lift force generated on the body by a fluid. Underwater gliders should be equipped with mechanisms that can induce heave and pitch motions. In this study, an inner movable and rotatable mass mechanism was proposed to generate the pitch and roll motions of an underwater glider. In addition, a buoyancy control unit was presented to adjust the displacement of the underwater glider. The buoyancy control unit could generate the heave motion of the underwater glider. In order to analyze the underwater dynamic behavior of this system, nonlinear 6-DOF dynamic equations that included mathematical models of the inner movable mass and buoyancy control unit were derived. Only kinematic characteristics such as the location of the inner movable mass and the piston position of the buoyancy control unit were considered because the velocities of these systems are very slow. The effectiveness of the proposed dynamic modeling was verified through sawtooth and spiraling motion simulations.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow (초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발)

  • 임홍영;최영돈;김용찬;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

Evaluation of The Holes Reducing Buoyancy During Painting of A Truck Cab (TRUCK CAB 전착 도장 시 부력 방지용 HOLE 영향 평가)

  • 임정환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.42-49
    • /
    • 2004
  • When a truck cab is conveyed at a constant speed by a hanger and immersed into the painting reservoir, it may fall off from the hanger by buoyancy. In order to reduce the buoyancy, on the bottom of a cab panel are holes placed, which allow paint to flow into the inside of a cab. In this study, a differential equation is derived which can be solved numerically by using 4th-Order Runge-Kutta method to calculate transient behavior of the buoyant force with sizes and locations of the holes given. The solution is utilized to optimally determine sizes and locations of the holes.

Improving the Design Process of Pleasure Yachts for CE RCD Certification via Modification to Buoyancy and Stability Assessment Method

  • Oh, Daekyun;Lee, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.301-312
    • /
    • 2017
  • CE RCD (Recreational Craft Directive) is a certification for the design and construction of small vessels, including pleasure yachts, which are widely used not only in the countries within the European Union, but also in Japan and Southeast Asia. Recently, South Korean leisure craft shipyards have developed interest in exporting to foreign leisure craft markets such as Europe; however, they have encountered difficulties because of the CE RCD regulations, which are relatively complex and difficult to understand. The requirements for buoyancy and stability, which are essential properties that must be understood within the early stage of ship design, are defined based on ISO 12217. However, preparing this assessment according to ship classification regulations is an exceedingly complex task, even with knowledge of naval architecture. In this research, we have developed design support tools to systematically support assessments and preemptively define design information so that buoyancy and stability assessments based on ISO 12217 can be systematically prepared. Our research results were applied to actual examples of yacht design to confirm validity. We believe that the improved yacht design process presented in this research can act as a foundational reference for enhancing the effectiveness and systematic buoyancy and stability assessments.

Buoyancy Engine Independent Test Module Test in the the Deep Ocean Engineering Basin and at Sea (부력엔진 독립시험 모듈 심해공학수조 시험과 실해역 시험)

  • Chong-Moo Lee;Hyungwoo Kim;Heung Hyun Lim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.629-634
    • /
    • 2024
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO) has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module has been tested in the Ocean Engineering Basin(C.M.Lee et al., 2023). After that, more tests were performed in the Deep Ocean Engineering Basin and at sea. In the 50-meter depth pit test of the Deep Ocean Engineering Basin, there were no problems with the ascent and descent operations, but the buoyancy engine was not properly maintained due to various problems in the independent test module, resulting in a difference between the calculated results using the solution of the equations of motion and the actual measurement results. The East Sea test was conducted at a depth of approximately 110 meters north-east of Pohang, with a dive to 100 meters. The difference between the pressure sensor value and the calculated value was observed, but after checking the results of the underwater position tracking device(USBL, Ultra Short Base Line system), it was estimated that the difference was caused by the influence of the current.