• Title/Summary/Keyword: Buoyancy Flow

Search Result 269, Processing Time 0.031 seconds

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

An Experimental Study of Smoke Movement in Tunnel Fires (터널화재시 연기 거동에 관한 실험적 연구)

  • Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Six cases of experiments(pool diameter is 6.5cm, 7.3cm, 8.3cm, 10cm, l2.5cm and l5.4cm), in which vertical vents positioned 1m from the fire source symmetrically, were conducted in order to evaluate the effect of the vent on smoke movement. In case of heat release rate under 2MW, smoke front reached to the tunnel exit about 20 see delayed with ventilation and the smoke velocity was proportional to the power of the heat release rate. Temperature after the vent was lower than without vent. In case of l5.4cm pool, the temperature difference was about $50^{\circ}C$. It was confirmed that the thickness of smoke layer was maintained uniformly under the 35% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

Development of a High Accuracy Pure Upwind Difference Scheme (고차 정확도의 순수 상류 차분법의 개발)

  • Cho Ji Ryong
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.555-562
    • /
    • 1998
  • Under the influence of non-uniform magnetic field, melt flow in steady state and oxygen concentration in unsteady state are numerically investigated. The strength of the applied characteristic magnetic fields are B=0.1T, 0.2T, and 0.3T, respectively. The buoyancy effects due to the crucible wall heating and the thermocapillary effects due to the surface tention at the free surface are suppressed differentially by the non-uniform magnetic fields. As the intensity of characteristic magnetic fields is increasing, the recirculation region in the meridional plane is moving toward the growing crystal, and is diminishing. The oxygen concentration on the growing surface of crystals is decreasing and the uniformity of the oxygen concentration is increasing as the intensity of the magnetic fields is increasing.

  • PDF

Analysis of Hydraulic Lift Force of a Fuel Assembly (핵연료 집합체에 대한 수력적 양력의 해석)

  • Sim, Yoon-Sub;Oh, Dong-Seok;Hong, Soung-Dug;Kwon, Hyuk-Sung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 1990
  • The exact expression for the 1151 force on a fuel assembly in a reactor core is derived in terms of calculable hydraulic parameters. The relation for the lift force. pressure drop, buoyancy force, viscous force. and fuel assembly weight is discussed. Based on the derived exact expression. error analysis is made for a simple expression applying COBRA IV-i to a typical PWR fuel assembly. The error analysis revealed that the error of the simple expression consists of four terms and the overall error depends on the flow rate change direction, and its magnitude is about 1%.

  • PDF

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

STUDY ON COOLING PERFORMANCE BY CONVECTIVE HEAT TRANSFER WITH DIFFERENT DISK BRAKE SHAPES (브레이크 디스크 형상에 따른 대류열전달에 의한 방열성능 연구)

  • Park, C.W.;Lee, D.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This research is to numerically investigate the convective cooling performance in the Disk brake. Research concentrates on the heat transfer coefficient and cooling performance which are selected with cooling local locations. Cooling performance of the Hole disk has been compared by Ventilated Disk. According to the results of heat transfer on the disk brake, activated velocity distributions more appear in the Hole disk. This is due to the fact that a number of hole units have exactly 120 on the surface of the hole disk. Therefore, velocity distributions of hole disk brake is better activated than Ventilated disk. According to the calculations of Nusselt number between surface and atmosphere in the interested cooling area, average value of cooling effect has been increased 13.5% by the hole disk at driving of speed 65 km/h situation and grown 18% by the hole disk at driving speed of 100 km/h. Due to the flow of air through the hole route, cooling performance of the hole disk was very excellent. In addition, cooling effect on edge of the bottom is better than the vicinity of center.

Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process (Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향)

  • 문승재;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.