When large size nozzle with low jet velocity is used, the buoyancy effect arises from the density difference among propane, air, and burnt gas. Flame characteristics in such buoyant jets have been investigated numerically to elucidate the effect of buoyancy on lifted flames. It has been demonstrated that the cold jet has circular cone shape since upwardly injected propane jet decelerates and forms stagnation region. In contrast to the cold flow, the reacting flow with a lifted flame has no stagnation region by the buoyancy force induced from the burnt gas. To further illustrate the buoyancy effect on lifted flames, the reacting flow with buoyancy is compared with non-buoyant reacting flow. Non-buoyant flame is stabilized at much lower height than the buoyant flame. At a certain range of fuel jet velocities and fuel dilutions. an oscillating flame is demonstrated numerically showing that the height of flame base and tip vary during one cycle of oscillation. Under the same condition. non-buoyant flame exhibits only steady lifted flames. This confirms the buoyancy effect on the mechanism of lifted flame oscillation.
Turbulent mixed convection in heated vertical annulus is investigated using Direct Numerical Simulation (DNS) technique. The objective of this study is to find out the effect of buoyancy on turbulent mixed convection in heated vertical annulus. Downward and upward flows with bulk Reynolds number 8500, based on hydraulic diameter and mean velocity, have been simulated to investigate turbulent mixed convection by gradually increasing the effect of buoyancy. With increased heat flux, heat transfer coefficient first decreases and then increases in the upward flow due to the effect of buoyancy, but it gradually increases in downward flow. The mean velocity and temperature profiles can not be explained by the wall log laws due to the effect of buoyancy, too. All simulation results are in good quantitative agreement with existing numerical results and in good qualitative agreement with existing experimental results.
Turbulent mixed convection in heated vertical annulus is investigated using Direct Numerical Simulation (DNS) technique. The objective of this study is to find out the effect of buoyancy on turbulent mixed convection in heated vertical annulus. Downward and upward flows with bulk Reynolds number 8500, based on hydraulic diameter and mean velocity, have been simulated to investigate turbulent mixed convection by gradually increasing the effect of buoyancy. With increased heat flux, heat transfer coefficient first decreases and then increases in the upward flow due to the effect of buoyancy, but it gradually increases in downward flow. The mean velocity and temperature profiles can not be explained by the wall log laws due to the effect of buoyancy, too. All simulation results are in good quantitative agreement with existing numerical results and in good qualitative agreement with existing experimental results.
The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.
The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.
In this paper, we describe the behavior of two self-excitations in laminar attached free-jet flames under the influence of DC electric fields, one of buoyancy-driven and the other of diffusion-thermal instability, established from the horizontal and vertical injection. In the horizontal injection with removed buoyancy effect, oscillating flames with the frequency of 1.3 - 7.4 Hz were observed in a certain condition with Lewis number more than unity. On the other hand, it was appeared Lewis number induced self-excitation as well as buoyancy-driven self-excitation in the vertical upward injection with DC electric fields. This behavior had frequency range of 1.6 - 9.4 Hz and was exhibited to attribute the buoyancy effect. Finally, a well-defined division about two self-excitations having similar frequency range is briefly discussed.
In this paper, we propose an image-based synthesis method that can effectively represent the spark effect in fire simulation. We use the real flame image or animated image as inputs and perform the following steps : 1) extract feature vectors from the image, 2) calculate artificial buoyancy, and 3) generate and advect spark textures. We detect the edge from images and then calculate the feature vectors to calculate the buoyancy. In the next step, we compute the high-quality buoyancy vector field by integrating the two-dimensional feature vector and the fluid equation. Finally, the spark texture is advect by buoyancy field. As a result, our method is performed much faster than the previous approach and high-quality results can be obtained easily and stably.
The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.
Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.
Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Lee, Byeong Jun;Kwon, Oh Boong
한국연소학회:학술대회논문집
/
한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
/
pp.83-86
/
2015
The Laminar lifted methane jet flames diluted with helium and nitrogen in co-flow air have been investigated experimentally. The chemiluminescence intensities of $OH^{\ast}$ and $CH_2O^{\ast}$ radicals and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera, monochromator and digital video camera. The product of $OH^{\ast}$ and $CH_2O^{\ast}$ is used as a excellent proxy of heat release rate. These methane jet flames could be lifted in buoyancy and jet dominated regimes despite the Schmidt number less than unity. Lifted flames were stabilized due to buoyancy induced convection in buoyancy-dominated regime. It was confirmed that increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration caused an increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime lifted flames were observed even for nozzle exit velocities much higher than stoichiometric laminar flame speed. An increase in radius of curvature in addition to the increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration stabilizes such lifted flames.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.