• Title/Summary/Keyword: Bunker Fuel Oil C

Search Result 27, Processing Time 0.026 seconds

Structural Safety Evaluation of a 3-way Damper Valve for Scrubber-linked Exhaust Gas Control (스크러버 연계 배기가스 배출제어용 3방향 댐퍼밸브의 구조 안전성 평가)

  • Kim, Young-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1007-1014
    • /
    • 2020
  • IMO(International Maritime Organization) continues to strengthen environmental regulations on exhaust gases such as CO2, NOx, SOx. As for sulfur oxides, from 1 January 2020, all ships on international voyages must use fuel with a sulfur content of 0.5% or less. Or, it is obligatory to use an exhaust gas treatment device that has the same effect. Shipping companies are using low-sulfur oil, replacing them with LNG fuel, or installing scrubbers that suppress sulfur oxide emissions. In the case of ships using bunker C oil, the load on the engine is lower when entering and departing, so the exhaust gas pressure is lowered and the scrubber cannot be properly utilized. Therefore, diesel oil with low sulfur content is used when entering and leaving the coast. When diesel oil is used, exhaust gas is directly discharged through the control system and piping system, and when bunker C oil is used, sulfur oxides are reduced by scrubbers through other control systems and piping systems to discharge exhaust gas. Accordingly, a company has developed a system called a three-way damper valve that can control exhaust gas emissions while integrating these two control systems and piping systems into one. In this study, the control characteristics of the integrated exhaust gas control system and structural safety against external loads in a high-temperature exhaust gas environment were reviewed.

A Study on Characteristics of Emulsified Fuel (유화연료의 특성에 관한 연구)

  • Jung, J.S.;Kim, J.J.;Lee, K.B.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.105-110
    • /
    • 1999
  • The elementary experiment was performed to develop the emulsified fuel production system using pressure injection nozzle in this study. The stabilities and characteristics of emulsified fuel which is produced through direct spray of water via pressure injection nozzle into oil are examined. To understand performance of emulsion production, stabilities of emulsified fuel which is made by adding water to the mixed fuel of Bunker-C and 10 $^{\sim}$ 50 vol% of heating oil were investigated. According to volume ratios of surfactant in heating oil the stability and SMDs were measured

  • PDF

Environmental Impact Evaluation for Glass Bottle Recycle using Life Cycle Assessment (LCA를 이용한 유리병 재활용의 환경영향 평가)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1067-1074
    • /
    • 2014
  • Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of glass bottle recycle. The LCA consists of four stages such as Goal and Scope Definition, Life Cycle Inventory(LCI) Analysis, Life Cycle Impact Assessment(LCIA), and Interpretation. The LCI analysis showed that the major input materials were water, materials, sand, and crude oil, whereas the major output ones were wastewater, $CO_2$, and non-hazardous wastes. The LCIA was conducted for the six impact categories including 'Abiotic Resource Depletion', 'Acidification', 'Eutrophication', 'Global Warming', 'Ozone Depletion', and 'Photochemical Oxidant Creation'. As for Abiotic Resource Depletion, Acidification, and Photochemical Oxidant Creation, Bunker fuel oil C and LNG were major effects. As for Eutrophication, electricity and Bunker fuel oil C were major effects. As for Global Warming, electricity and LNG were major effects. As for Ozone Depletion, plate glasses were major effects. Among the six categories, the biggest impact potential was found to be Global Warming as 97% of total, but the rest could be negligible.

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Park, M.C.;Kim, B.S.;Oh, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF

A Study on Diesel Engine NOx and Soot Emission Characteristics using Different Fuel Oils

  • Nam, Jeong-Gil;Kang, Dae-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1080-1088
    • /
    • 2008
  • This paper addresses some concerns faced by the shipping industry nowadays. Initially, the environmental issues were resolved and stricter regulations are now being implemented with regards to the exhaust gas, specifically nitrogen oxides (NOx) and sulfur oxides (SOx), emitted from ships. Secondly, with the increasing and unstable cost of fuel oils in the world market, it has become almost a necessity to explore on a new alternative fuel. Hence, this study was conducted. An experiment was carried-out on a fishing survey vessel with the main engine (M/E) and generator engine (G/E) operated on expensive marine gas oil (MGO). During the experiment, two pre-refinery systems were installed and different fuel oil samples were employed for the M/E and the G/E. Furthermore, the NOx emission and soot concentration were monitored and verified. The results confirmed the compatibility of some fuel oil types to the engines and meeting the emission standards. MDO, MF15 and Bunker A can be used in place of MGO for the engines(M/E, G/E).

An Empirical Analysis on the Price Difference between International Bunkering and Export for Bunker-C (BC유의 국제벙커링과 수출 가격 차이에 대한 실증 분석)

  • Kim, Youngduk;Han, Hyun-Ok
    • Environmental and Resource Economics Review
    • /
    • v.16 no.2
    • /
    • pp.239-273
    • /
    • 2007
  • Bunker-C is sold at the different price in the market for international bunkering and for export, though the quality of bunker-c is not much different in two markets. The price difference in two markets tends to increase since 2002 in Korea. This study shows that there is a possibility for a structural change in the price difference in two markets in Korea around June, 2002. In the search for possible explanations for this structural change, empirical analyses found that the price difference in Singapore, which had not have any explanatory power before June, 2002, has explained the price difference in Korea after July, 2002. Other explanatory variable for the price difference was the growth rate of crude oil price in the previous period. The empirical results suggest that the price difference in bunkering market and export market might be explained by the price discrimination which is adopted as a competitive strategy by oil companies in competing with Singapore.

  • PDF

Effect of Fuel Mixing Ratio on Fuel Consumption in a Oil Fired Power Plant (중유화력발전소에서 바이오연료 혼합연소가 연료소비량에 미치는 영향)

  • Hong, Sangpil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • Each of fuel consumption per hour was measured at the 320 MW and 380 MW generator output while changing mixing ratio of bio fuel oil to 50%, 80% and 100%. Fuel consumption per hour was increased from 11.0% to 20.4% as mixing ratio of bio fuel oil was changed from 50% to 100% at the 320 MW generator output comparing with fuel consumption per hour in case of bunker-C oil single firing. Fuel consumption per hour was also increased from 12.0% to 21.1% as mixing ratio of bio fuel oil was changed from 50% to 100% at the generator output 380 MW. Furthermore, it was confirmed that plant efficiency was decreased as mixing ratio of bio fuel oil was increased from 50% to 100% as a result that plant efficiency was calculated using the measured fuel consumption per hour, the generator output and the gross heating value.

  • PDF

Structural Analysis of Petroleum Fractions by Near-Infrared and $^{13}C$-NMR Spectroscopy (근적외선과 $^{13}C$-핵자기 공명 분광학에 의한 석유유분 구조분석)

  • Choi, Ju-Hwan;Kim, Hai-Dong;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.168-178
    • /
    • 1996
  • Molecular structures of petroleum fractions(diesel fuel, bunker-C oil, lubricant base stocks) have been analyzed and compared in terms of the compositions (aromatics, naphtherucs, paraffinics), aromatics(benzene-nuclear and bonded alkyl groups), C2(methylene) carbon atoms % $C_{\alpha}$ and $C_{\beta}$ carbon stom % in alkyl groups and paraffins(branched and normal) by near-infrared and $^{13}C$-NMR spectroscopy.

  • PDF

On the Abnormal Wear of Cylinder Liners and Piston Rings of the Marine Diesel Engine (박용(舶用) 디이젤기관(機關)의 실린더 라이너 및 피스턴 링의 이상마모(異常摩耗)에 관(關)하여)

  • Tae-Choon,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.95-102
    • /
    • 1971
  • Since the fuel oil of the bunker C grade, which is commonly burnt in the large marine diesel engine, causes the corrosive wear of cylinder liners and piston rings, a cylinder oil of high alkality is frequently used to prevent the wear. This practice, however, brings us an another problem to cause the abnormal wear. In this study the author made an investigation of the mechanism of the abnormal wear by the experiments surveying the influences of the alkality of a cylinder oil and the temperature of cylinder wall on the wear. The major results obtained from this study are as follows; A cylinder oil of low alkality is clearly effective for the preventation of the abnormal wear. Therefore, it is recommended that, prio to using a cylinder oil of high alkality, a cylinder oil of low alkality should be used until bringing an end to the initial wear. It is also observed that the abnormal wear depends largely on the temperature of the cylinder wall, that is, the higher the temperature goes up the severer the wear grows.

  • PDF

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.