• 제목/요약/키워드: Bump simulation

검색결과 85건 처리시간 0.03초

언로드 성능향상을 위한 디스크 범프의 디자인 및 해석 (Design and analysis of disk bump to Improve unloading performance)

  • 이형준;이용현;김기훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.140-143
    • /
    • 2006
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance. The main issues of L/UL are no slider-disk contact and no media damage. To make sure L/UL stability, we consider many design parameters in L/UL systems. This paper is focused on disk design parameters through designing a disk bump in outer guard band(OGB). In the case of bump design on the disk, we create a bump by changing bump design parameters as like size and amplitude. From dynamic analysis, we choose optimal bump model with the highest flying height and the longest rising time. When a slider passes over a bump in dynamic system, the slider rise above bump according to bump shape. On the basis of this rising effect on the bump, we apply bump design to classical L/UL system having slider-disk contact possibility. This study is based on the simulation, we finally realize improved slider unloading performance by applying slider dynamic result on unload simulation.

  • PDF

HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구 (Design and Experiment investigation of disk bump to improve unload performance in HDD)

  • 이형준;이용현;박경수;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

차량의 조종 안정성 향상을 위한 전륜 범프 스터어 최적화 (Optimization of front Bump Steer for Improving Vehicle Handling Performances)

  • 서권희;이윤기;박래석;박상서;윤희석
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.80-88
    • /
    • 2000
  • This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.

  • PDF

MIG 헤드 가상 갭에 의한 재생 전압 스펙트럼 Bump의 컴퓨터 시뮬레이션 (Computer simulation of Playback spectrum bumps due to pseudo gaps of MIG head)

  • 한은실;조순철
    • 한국자기학회지
    • /
    • 제4권2호
    • /
    • pp.130-134
    • /
    • 1994
  • 본 연구에서는 MIG 헤드의 재생 전압 스펙트럼에 나타나는 Bump들의 발생 원인을 설명하고, 이론적으로 예상된 주파수에서 Bump들의 진폭을 컴퓨터로 시뮬레이션 하였다. MIG 헤드의 센더스트와 페라이트 사이의 가상 갭(pseudo gap)이 없는 경우와 양쪽 모두 $0.02\;\mu\textrm{m},\;0.2\;\mu\textrm{m}$, 인 가상 갭을 갖는 3가지 종류의 MIG 헤드들을 설정하고, 금속 분말(Metal Powder) 테입을 사용한 것으로 가정하였다. 시뮬레이션 결과, 이론적으로 예상한 주파수에서 Bump들이 발생하였으며, Bump 진폭 또한 예상치와 거의 일치하였다.

  • PDF

컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가 (Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation)

  • 박해권;김경욱;심성보;김재원;박문섭;송태영
    • Journal of Biosystems Engineering
    • /
    • 제30권6호통권113호
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

사다리꼴 상부 단면을 갖는 구리기둥 범프의 신뢰성 향상에 대한 연구 (Studies on Copper Pillar Bump with Trapezoidal Cross Section on the Top Surface for Reliability Improvement)

  • 조일환
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.496-499
    • /
    • 2012
  • Modified structure of copper pillar bump which has trapezoidal cross section on the top region is suggested with simulation results and concept of fabrication process. Due to the large surface area of joint region between bump and solder in suggested structure, electro-migration effect can be reduced. Reduction of electro-migration is related with current density and joule heating in bump and investigated with finite element methods with variation of dimensional parameters. Mechanical characteristics are also investigated with comparing modified copper pillar bump and conventional copper pillar bump.

HDD 의 언로딩 성능 개선을 위한 디스크 범프의 설계 및 해석 (Design and Analysis of Disk Bump to Improve the Unloading Performance in HDD)

  • 이용은;이용현;이형준;박노철;박경수;박영필
    • 정보저장시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.183-190
    • /
    • 2007
  • In most hard disk drives that apply the ramp load/unload technology, the head is unloaded at the outer edge of the disk while the disk is rotating. During the unloading process, slider-disk contacts may occur by lift-off force and rebound of the slider. The main issue of this paper is to prevent the slider-disk contact by rebound, and we apply a disk bump to the unloading process. To do so, first, the ranges of bump dimension are determined. Second, the stability of each bump is checked by dynamic simulation. Finally, unload simulations are performed for stable bump designs. As a result of these steps, the effect of the bump design and the position for the unloading performance were investigated. As a consequence, we propose the optimal bump design to improve the unloading performance. Furthermore, we can identify to remove rebound contact by applying a bump on disk during the unloading process.

  • PDF

무연 솔더 접합부을 갖는 플립칩에서의 언더필 및 범프 피치 변화에 의한 열 피로 수명 예측 해석 (Simulation of Thermal Fatigue Life Prediction of Flip Chip with Lead-free Solder Joints by Variation in Bump Pitch and Underfill)

  • 김성걸;김주영
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.157-162
    • /
    • 2010
  • This paper describes the thermal fatigue life prediction models for 95.5Sn-4.0Ag-0.5Cu solder joints of Flip chip package considering Under Bump Metallurgy(UBM). A 3D Finite element slice model was used to simulate the viscoplastic behavior of the solder. For two types of solder bump pitches, simulations were analyzed and the effects of underfill packages were studied. Consequently, it was found out that solder joints with underfill had much better fatigue life than solder joints without underfill, and solder joints with $300{\mu}m$ bump pitch had a longer thermal fatigue life than solder joints with $150{\mu}m$ bump pitch. Through the simulations, flip chip with lead-free solder joints should be designed with underfill and a longer bump pitch.

회전헤드에 대한 주행테이프의 부상특성 ( I ) (Flying Characteristics of Running Tape above Rotating Head (I))

  • 민옥기;김수경
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.523-536
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the numerical simulation and the experiment. The scope of analysis is confined to the phenomena of two dimensional elasto hydrodynamic lubrication between the protruded bump on a rotating cylinder and the running tape. This model is based on the elastic deformation equation of plate and shell and Reynolds equation. Finite difference method is employed as a numerical technique to calculate (1) the distribution of pressure between the running tape and rotating bump and (2) the vertical deformation of elastic thin tape over he rotating bump under hydrodynamic pressure. In numerical analyses, the effects of bump size on flying characteristics of the tape were evaluated and examined considering the influence of tension and stiffness of tape.

범프로드에서의 대형트럭 승차감 평가 (Ride Quality of a Heavy Duty Truck on a Single Bump Road)

  • 강희용;양성모;김봉철;윤희중
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.91-96
    • /
    • 2001
  • When it is considered that many vehicle rides on the road and ride quality is an important method to evaluate vehicle performance with handling, running-over-bump manoeuvre may be suitable for testing ride quality. In this paper, a computed model has roughly steering system and lumped mass, connected by joint each rigid body, and suspension that has beam elements and has shock absorber as force element to represent nonlinear characteristics. A computer simulations for passing over a bump were made with two velocities. One side of vehicle passed over bump in due consideration of driver's habit that driver is subject to avoid a bad ride quality. On simulation, vertical acceleration, pitch angle and roll angle were measured at the mass center of chassis each case.

  • PDF