• Title/Summary/Keyword: Bulking

Search Result 211, Processing Time 0.033 seconds

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF

Changes of characteristics of livestock feces compost pile during composting period and land application effect of compost (축분 퇴비화과정 중 특성변화와 축분퇴비 이용효과)

  • Jeong, Kwang-Hwa;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • Composting of livestock feces is economic and safe process to decrease the possibility of direct leakage of organic pollutants to ecosystem from commercial and environmental point of view. This study was conducted with three different experiments related to composting of livestock feces. The purpose of experiment 1 was to investigate changes of characteristic of compost pile during composting period by low temperature in cold season. To compare composting effect of experimental compost pile and control pile exposed in cold air, experimental compost piles were warmed up by hot air until their temperatures were reached at $35^{\circ}C$. Sawdust, Ricehull and Ricestraw were mixed with livestock feces as bulking agent. The highest temperatures of compost pile during composting period were in sawdust, rice hull, rice straw, and control were $75^{\circ}C$, $76^{\circ}C$, $68^{\circ}C$, $45^{\circ}C$ respectively. Moisture content, pH, C/N and volume of compost were decreased during composting period. Experiment 2 was carried out to study utilization effect of compost by plant. A corn was cultivated for 3 years on fertilized land with compost and chemical fertilizer. The amount of harvest and nutrition value of corn were analyzed. In first year of trial, the amount of harvest of corn on land treated with compost was lower by 20% than that of land treated with chemical fertilizer. In second year, there was no difference in yield of com between compost and chemical fertilizer. In third year, the yield of com on land fertilized with compost was much more than that of land fertilized with chemical fertilizer. The purpose of experiment 3 was to estimate the decrease of malodorous gas originating from livestock feces by bio-filter. Four types of bio-filters filled with saw dust, night soil, fermented compost and leaf mold were manufactured and tested. Each bio-filter achieved 87-95% $NH_3$ removal efficiency. This performance was maintained for 10 days. The highest $NH_3$ removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of $NH_3$ by about 95%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The concentration of hydrogen sulfide and methyl mercaptan originating for compost were equal to or less than $3mg/{\ell}$ and $2mg/{\ell}$, respectively. After passing throughout the bio-filter, hydrogen sulfide and methyl mercaptan were not detected.

  • PDF

Characteristic Changes of Swine Manure by Air Suction Composting System (돈분 퇴비화 시 공기 흡입 시스템에 따른 퇴비화 특성 변화)

  • Lee, Dong-jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Cho, Won-Mo;Ravindran, B.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The objective of this study was to investigate the variations of physico-chemical properties during the swine manure composting, sawdust as the bulking agent was composted at different points (Top layer, Side of middle layer, Bottom layer). Air suction system with constant bottom aeration in bench scale reactors (30 L). The highest temperature was reached in the range of $58^{\circ}C$ to $62^{\circ}C$ on $3^{rd}$ day and this thermophilic phase (> $50^{\circ}C$) was continued for 3 days in all the treatment mixtures. However, the temperature was gradually decreased to room temperature at the end of 60 day composting process. Except control, the discharged ammonia ($NH_3$) was a maximum in the treatment order of Top layer>Bottom layer>Side of middle layer as 500 ppm, 162 ppm and 120 ppm, respectively, on the $4^{th}$ day and showing that Top layer point Air suction produce much more ammonia content than the other point. During the composting process, the total Kjeldahl nitrogen (TKN) was gradually increased due to the mass loss in the composting mixtures. At the same time, C/N ratio was decreased to Top layer, 13; Side of middle layer, 12 and Bottom layer, 13 at Air suction points. The significant reduction of C/N ratio in all different air suction system when manure was matured. The $NH_4-N$ to $NO_3-N$ ratio was recorded as 10.52 at the initial stage of the compost mixtures and reduced to 0.97 (Top layer), 0.70 (Side of middle layer), 3.2 (Bottom layer) because of manure decomposition. The overall results revealed that Top layer and Side of middle layer Air suction is a suitable option when compared other point for high quality composts.

Changes of Physico-chemical Characteristic on Swine Manure Using Different Suction Strength in Composting System (돈분 퇴비화 시 공기 흡입 강도에 따른 이화학적 특성변화)

  • Lee, Dong-Jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Kawg, Jung-Hoon;Ravindran, B.;Lee, Ji-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • The aim of this experiment was to investigate the effect of air suction rate (SR) during the composting process of swine manure mixed with sawdust used as a bulking agent. In the 25 L composting reactors, the suction rate (SR) was at four different treatment levels (100%, 200%, 300%, 400%), and were fixed on the based on constant aeration rate into the composting mixtures. The temperature reached to thermophilic phase within 2 days and it was maintained up to the $5^{th}$ day of the composting process in all reactors and then gradually decreased to room temperature at the end of the composting process. The moisture content (MC, %) of the initial mixtures was 64.27%, and it was reduced to 38.4, 33.08, 14.59 and 11.93 in the different suction rate of 100%, 200%, 300%, 400%, respectively in the end process. During the composting, the level of pH was increased from 6.83 to 8.67 and it gradually decreased to 7.56 in 100% and 200%(SR). At the same time, the pH values were reduced only up to 8.19 at 300%, and 8.08 at 400%(SR), showing that suction strengths of 100% and 200% were the better option for composting than those of 300% and 400%. The total Kjeldahl nitrogen (TKN) of initial composts mixtures was 2.3% and were changed in 3.3, 3.1, 2.5, and 2.3% at the end of the composting period from the 100%-400% (SR) variations respectively. These results also indicated that 100% and 200% (SR) were more affected by the dry mass loss as $CO_2$ and water evaporation. The initial value of C/N ratio was 25.17 and were significantly reduced to 11.88, 11.97, 14.31, and 14.72 at the end of the experiment, respectively from the 100%-400% (SR) variations. These results suggest that the suction rate (SR) of 100% and 200% relative to constant air supply would be the optimal conditions to produce high-quality compost.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF

Heavy Metal Speciation in Compost Derived from the Different Animal Manures (이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化))

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-282
    • /
    • 2004
  • Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

Compositional changes in maesil-cheong formulated with turanose during the storage period (투라노스 당침을 통해 제조된 매실청의 저장기간 중 성분 함량 변화)

  • Kim, Jung-Geun;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.688-694
    • /
    • 2021
  • Turanose is a potential candidate for use as a functional sweetener because of its gentle taste, low calorie, and non-cariogenicity. The aim of this study was to replace sucrose with turanose to produce health-beneficial maesil-cheong. Quality effects of turanose on maesil-cheong were evaluated by determining the contents of free sugars, organic acids, amygdalin, and antioxidant activity. The pH and Brix values of sucrose- and turanose-based maesil-cheong remained at the same level between 2.83 and 3.00 and 54.6-58.6°Bx, respectively, after 90-day storage. Among oxalic, malic, and citric acids, citric acid content was the highest in both maesil-cheong samples. Turanose did not significantly hydrolyze in maesil-cheong, whereas sucrose was completely hydrolyzed to glucose and fructose. Thus, turanose is suitable for the development of acidic maesil-cheong to improve its health promoting effect. Turanose showed product qualities similar to sucrose-based maesil-cheong. Turanose can be used as a functional sweetener or bulking agent in processed foods.

Effects of Rice Hull Addition and Bin Wall Characteristics on Pig Slurry Composting Properties (왕겨 이용 방법과 옹벽이 돈분 퇴비화에 미치는 효과)

  • ;Craig, Ian P
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • This work was carried out to investigate the effects of rice hull continuously utilized and/or replenished on the composting properties and to obtain the fundamental data between an unsupported wall and a soil supported wall during the period of composting with pig slurry in winter season. There were no the temperature holding effects in soil supported wall. New compost facility design for the temperature holding effects from a soil supported wall was required. The results were as follows; 1. Composting 1㎥ of pig slurry caused to save on 0.31㎥ of bulking agent in the unsupported wall in comparison with a soil supported wall in the rice hull single addition, and 0.45㎥ in the rice hull gradual addition. 2. The pile in the rice hull single addition had a high temperature in 4 days of composting indicating $71^{\circ}C$ and had a tendency in repeating periodically between $40^{\circ}C$ and $65^{\circ}C$ till 43 days of composting. And also the temperature of the pile was maintained between $48^{\circ}C$ and $28^{\circ}C$ after 50 days of composting. The pile of a rice hull gradual addition had the lower point of the temperature high increasingly according to adding up rice hull during the 35 days of composting. 3. The pH recorded in the rice hull single addition was higher(8.35∼10.02) compared to the rice hull gradual addition(8.6∼9.8). The pile of a rice hull single addition had a tendency in abruptly decreasing pH of the unsupported wall during the period of between 0.363$\textrm m^3$ and 0.537$\textrm m^3$ as a unit of pig slurry per rice hull. EC depending upon the way in adding rice hull was changed between 1.10 mS/$\textrm {cm}^3$ and 1.87 mS/$\textrm {cm}^3$. 4. The organic matter in an unsupported wall of the hull single addition was maintained the level of 55% during the period between 0.119㎥ and 0.363㎥ as a unit of pig slurry per rice hull while in the soil supported wall between 48 and 70. Water soluble C:N ratio was maintained between 1 and 2 in the rice hull single addition, while between 1 and 3 in the rice hull gradual addition. 5. Fertilizer constituents were detected higher level in the unsupported wall than in the soil supported wall in all treatments. This was dependant upon the input of pig slurry.

  • PDF