• Title/Summary/Keyword: Bulk Wave

Search Result 217, Processing Time 0.03 seconds

Is ultrasound wave affected by anisotropy of trabeculae (섬유주의 이방성에 따른 초음파의 파형 변화)

  • Yoon, Won-Sok;Yoon, Young-June
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.236-241
    • /
    • 2011
  • Mechanical properties of cancellous bone with a high porosity and cortical bone with a high fraction of solid are estimated by the measurement of ultrasonic wave propagation. The speed of sound (SOS) in ultrasonic waves is usually measured by two equations, bulk wave equation and bar wave equation. Bulk wave speed has almost same as the fast wave of Biot's theory. In this study, we examine whether the bulk wave speed is influenced by the anisotropy of bone matrix. The SOS when the bone matrix is isotropy is 0.69% faster than that when the bone matrix is transversely isotropy. We also examine if the use of bar equation is adequate for a cortical bone. In the previous paper, the bar wave speed is a function of Young's modulus or elastic coefficient tensor. In the same manner, the effect of bar wave speed to isotropic and anisotropic bone is estimated.

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

Bow hull-form optimization in waves of a 66,000 DWT bulk carrier

  • Yu, Jin-Won;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.499-508
    • /
    • 2017
  • This paper uses optimization techniques to obtain bow hull form of a 66,000 DWT bulk carrier in calm water and in waves. Parametric modification functions of SAC and section shape of DLWL are used for hull form variation. Multi-objective functions are applied to minimize the wave-making resistance in calm water and added resistance in regular head wave of ${\lambda}/L=0.5$. WAVIS version 1.3 is used to obtain wave-making resistance. The modified Fujii and Takahashi's formula is applied to obtain the added resistance in short wave. The PSO algorithm is employed for the optimization technique. The resistance and motion characteristics in calm water and regular and irregular head waves of the three hull forms are compared. It has been shown that the optimal brings 13.2% reduction in the wave-making resistance and 13.8% reduction in the added resistance at ${\lambda}/L=0.5$; and the mean added resistance reduces by 9.5% at sea state 5.

Investigation of Terahertz Generation from Bulk and Periodically Poled LiTaO3 Crystal with a Cherenkov Phase Matching Scheme

  • Li, Zhongyang;Bing, Pibin;Yuan, Sheng;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.297-302
    • /
    • 2015
  • Terahertz (THz) wave generation from bulk and periodically poled $LiTaO_3$ (PPLT) with a Cherenkov phase matching scheme is numerically investigated. It is shown that by using the crystal birefringence of bulk $LiTaO_3$ and a grating vector of PPLT, THz waves can be efficiently generated by difference frequency generation (DFG) with a Cherenkov phase matching scheme. The frequency tuning characteristics of the THz wave via varying wavelength of difference frequency waves, phase matching angle, poling period of PPLT and working temperature are theoretically analyzed. The parametric gain coefficient in the low-loss limit and the absorption coefficient of the THz wave during the DFG process in the vicinity of polariton resonances are numerically analyzed. A THz wave can be efficiently generated by utilizing the giant second order nonlinearities of $LiTaO_3$ in the vicinity of polariton resonances.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

Film Bulk Acoustic Wave Resonator using surface micromachining (표면 마이크로머시닝을 이용한 압전 박막 공진기 제작)

  • 김인태;박은권;이시형;이수현;이윤희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

A Study on Frequency Property of Bulk Acoustic Wave Resonator Using PVDF (고분자 압전필름을 이용한 Bulk Acoustic Wave Resonator의 주파수 특성에 관한 연구)

  • Jeong, Young-Hak;Kim, Eun-Kwon;Yun, Chang-Jin;Lee, Kyu-Ill;Lee, Jong-Duk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.673-676
    • /
    • 2003
  • This paper describes the modeling and experimental results for Bulk Acoustic Wave(BAW) Resonator using PolyVinyliDene Fluoride(PVDF). We measured the input reflection coefficient ($S_{11}$) of resonators using vector network analyzer and experimental results were measured fundamental resonance at 2.3 GHz with a return loss of -29 dB. Because of fabricated resonator without etching process, we can confirm a possibility of resonator application as using a PVDF.

  • PDF

Terahertz Wave Generation via Stimulated Polariton Scattering in BaTiO3 Bulk Crystal with High Parametric Gain

  • Li, Zhongyang;Yuan, Bin;Wang, Silei;Wang, Mengtao;Bing, Pibin
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.261-268
    • /
    • 2018
  • Stimulated polariton scattering (SPS) from the $A_1$ transverse optical (TO) modes of $BaTiO_3$ bulk crystal generating a terahertz (THz) wave with the noncollinear phase-matching (NPM) condition is theoretically investigated. To our best knowledge, this is the first report on THz wave generation from $BaTiO_3$ bulk crystal via SPS. Phase-matching (PM) characteristics in the NPM configuration are analyzed. Effective parametric gain lengths for the Stokes and THz waves in the NPM configuration are calculated. The effective parametric gain coefficient and absorption coefficient of the THz wave in $BaTiO_3$ are theoretically simulated. The THz phonon flux densities generated via SPS in $BaTiO_3$ are theoretically calculated by solving the coupled wave equations under the NPM condition. The PM characteristics and THz-wave parametric gain characteristics in $BaTiO_3$ are compared to those in $MgO:LiNbO_3$. The results of the analysis indicate that $BaTiO_3$ is an attractive optical crystal for efficient THz wave generation via SPS.

Acoustic and Elastic Properties of the Southeastern Yellow Sea Mud, Korea

  • Kim, Gil-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.49-55
    • /
    • 2006
  • Compressional wave velocity (Vp), shear wave velocity (Vs), elastic and physical properties, and electrical resistivity for two core sediments obtained from Southeastern Yellow Sea Mud (SEYSM) were measured and computed. The sediments consist of homogeneous mud (mostly silt and clay) with shells and shell fragments. As a result, the mean grain size is uniform ($7.5-8.5{\Phi}$ throughout the core sediments. However, physical properties such as wet bulk density and porosity show slightly increasing and decreasing patterns with depth, compared to the mean grain size. The compressional (about 1475 m/s in average) and shear wave (about 60 m/s in average) velocities with depth accurately reflect the pattern of wet bulk density and porosity. Electrical resistivity is more closely correlated with compressional wave velocity than physical properties. The computed Vp/Vs and Poisson's ratios are relatively higher (more than 10) and lower (approximately 0.002) than Hamilton's (1979) data, respectively, suggesting the typical characteristics of soft and fully water-saturated marine sediments. Thus, the Vp/Vs ratio in soft and unconsolidated sediments is not likely sufficient to examine lithology and sediment properties. Relationships between the elastic constant and physical properties are correlated well. The elastic constants (Poisson's ratio, bulk modulus, shear modulus) given in this paper can be used to characterize soft marine sediments saturated with seawater.

A Low-Voltage Vibrational Energy Harvesting Full-Wave Rectifier using Body-Bias Technique (Body-Bias Technique을 이용한 저전압 진동에너지 하베스팅 전파정류회로)

  • Park, Keun-Yeol;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.425-428
    • /
    • 2017
  • This paper describes a full-wave rectifiers for energy harvesting circuit using a vibrational energy. The designed circuit is applied to the negative voltage converter with the body-bias technique using the Beta-multiplier so that the power efficiency is excellent even at the low voltage, and the comparator is designed as the bulk-driven type. The proposed circuit is designed with $0.35{\mu}m$ CMOS process, and The designed chip occupies $931{\mu}m{\times}785{\mu}m$.

  • PDF