• Title/Summary/Keyword: Bulge Forming

Search Result 48, Processing Time 0.029 seconds

Forming Limit Diagram Measurement of Tube for Tube Hydroforming Process (하이드로 포밍용 튜브의 성형 한계선도 측정)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.467-472
    • /
    • 2006
  • The forming limit diagram of tube is required for the part design and the formability analysis of tube hydroforming. The finite element analyses of simple bulge test were done to obtain the various strain combinations on FLC. The finite element analysis results were shown that the bursting at various strain combinations could be induced by simple bulge test. The experiment oi tube bulge test was carried out according to the test condition that obtained from finite element analysis and the left hand side of forming limit diagram was built.

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

A Study on the Sheet Metal Forming and the Plastic Deformation Characteristic by Using PAM-STAMP (PAM-STAMP를 이용한 박판성형성 및 소성변형 특성에 관한 연구)

  • Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper the forming simulation of circular bulge by using PAM-STAMP has been performed to estimate the sheet metal forning and the plastic deformation characteristic of circular bulge. The uniaxial tension tests adn bulge tests are carried out for studying the forming characteristics of materials, and also Moire experiment are carried out for measuring the radius of curvature of the bulge and the polar compressive thickness strain. In order to compare the simulation results with the experiment and Hills theory, the relationships between redius of curvature adn polar height of the bulge, between hydraulic pressure and polar height, and between polar compressive thickness strain and polar height, are used. According to this study, the results of simulation and Hills theory are good agreement to the experiment. So, the results of simulation by using PAM-STAMP and Hills theory will give engineers good information to assess the formagbility and plastic deformation characteristic of hydraulic circular bulge test.

  • PDF

Effects of Forming Depth on the Deformation Behavior of Cup-like Tubes in Tube Spinning Process (튜브 스피닝 공정에서 성형깊이가 컵형 튜브의 변형거동에 미치는 영향)

  • Shin, Y.C.;Yoon, D.J.;Lim, S.J.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.360-365
    • /
    • 2012
  • The aim of this study was to investigate the effects of forming depth on the deformation behavior of cup-like tubes made of AISI1020 steel in tube spinning process. Spinning process was performed on cup-like tubes, which had an inner diameter of 34mm and thicknesses of 7, 8.5 or 11.5mm. The forming depths achieved were 3, 4, and 5.5mm. The complex deformation behaviors occurring during the tube spinning process was explained using the experimental results. Also analyzed were the causes of the material buildup and the bulge defect of inner surface, observed on cross section of tubes. The relationship between tube spinning conditions and the height of bulge defect was examined. The results indicate that bulge defect is increased with a decrease of the forming depth. Moreover, a critical forming depth exists for preventing the generation of the bulge defect in the tube spinning process. The present results will be useful for future decisions of forming depths for successful tube spinning of cup-like tubes.

A Study on the Finite Element Analysis of Axisymmetric Hydrostatic Bulge forming Processes (축대칭 액압벌지 성형공정의 유한요소해석에 관한 연구)

  • Yun S. H.;Jin I. T.;Gu Y.;Ryoo I. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.115-119
    • /
    • 2001
  • This paper presents development of a Finite Element Analysis program. The program was developed on the based of second-dimensional plane strain rigid plasticity finite element analysis and an implicit program is coded. The program was tested by being applied to the axisymetric hydrostatic bulge forming processes using the circle dies. By the Finite Element Analysis at the fluid in chamber and at the blank material, we could know that the hydrostatic bulge forming processes can be influenced of material, the diameter of product and the forming velocity The developed Finite Element Analysis program was approved by the analysis results about forming variables.

  • PDF

A Study on the Effect of Back Pressure on the Superplastic Bulge Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 초소성 벌지성형에 미치는 배압력의 영향)

  • 송유준;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.175-178
    • /
    • 1997
  • A modified Mukerjee's model considering the microstructural evolution was developed to study the superplastic bulge forming process of Ti-6Al-4V alloy. Through the microstructual observation after deformation, it was found that the grain growth rate of uniaxially tested specimens was different from that of biaxially deformed specimens. From this result, bulge forming experiments with and without back pressure were performed to examine the grain growth behavior and to compare the results of biaxial test with those of triaxial test. Good agreement between the prediction by a modified Mukerjee's model and the experimental measurements was obtained for bulge profile and thickness distribution.

  • PDF

A Study on the Formability of Ellipse Panel by Finite Element Method (유한요소법에 의한 타원 판넬의 성형성에 관한 연구)

  • Kang, D.M.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-97
    • /
    • 1999
  • In this paper the forming simulations of ellipse bulge have been researched by using $PAM-STAMP_{TM}$ to estimate the sheet metal forming and the plastic deformation characteristic of ellipse bulge. Thin elliptical diaphragms of brass, copper, aluminum, and mild steel are bulged in elliptical dies having aspect ratios of 1.33 and 2. In order to compare the simulation results with the experiment and ellipse bulge's theory derived by using Johnson and Duncan's theory, the relations of hydraulic pressure and polar height, polar thickness strain and polar height, were compared. According to this study, the results of simulation and ellipse bulge's theory derived by using Johnson and Duncan's theory, and the bursting pressure and the bursting polar height are good agreement to the experiment. So, the results of simulation by using $PAM-STAMP_{TM}$ and the ellipse bulge's theory will give engineers good information to make assessment the formability and plastic deformation characteristic of hydraulic ellipse bulge test.

  • PDF

High-Resolution Simulations of the Nuclear Star-Forming Ring

  • Kim, Sungsoo S.;Saitoh, Takayuki R.;Baba, Junichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2013
  • We have performed a set of high-resolution simulations of nuclear star-forming ring that results in an inward gas migration from the galactic disk. Our simulations consider gas heating/cooling, star formation, and supernova feedback. The galactic potential was obtained from a snapshot of a 6.3 million particle simulation of a galactic disk at 1 Gyr, which manifests spiral arms and pseudo-bulge. The potential was modeled with a combination of 3-dimensional spherical (for the pseudo-bulge) and 2-dimensional cylindrical (for the disk) multipole expansion technique. With such a potential model, one can easily set up various realistic 3-dimensional potential models by slightly changing the expansion coefficients. We have performed a set of simulations with a few million gas particles covering the central ~6 kpc of the disk for different pseudo-bulge sizes and non-axisymmetry, and we report the dependence of the gas inflow rate, size of the star-forming ring, and star-formation rate in the ring on the size and strength of the non-axisymmetry in the bulge.

  • PDF

The Key role of the Bulge Compactness in Star-forming Activity in Late-type Galaxies

  • Jee, Woong-bae;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.32.2-32.2
    • /
    • 2015
  • Which mechanism governs star-formation activity in galaxies is still one of the most important, open questions in galactic astronomy. To address this issue, we investigate the specific star formation rate (sSFR) of late-type galaxies as functions of various structural parameters including the morphology, mass, radius, and mass compactness (MC). We use a sample of ~200,000 late-type galaxies with z = 0.02 ~ 0.2 from SDSS DR7 and a catalog of bulge-disk decomposition (Simard et al. 2011; Mendel et al. 2013). We find a remarkably strong correlation between bulge's MC and galaxy's sSFR, in the sense that galaxies with more compact bulge tend to be of lower sSFR. This seems counter-intuitive given that galactic sSFR is driven predominantly by disks rather than bulges and suggests that the central mass density plays a key role in recent star-forming activity. We discuss the physical cause of the new findings in terms of the bulge growth history and AGN activities.

  • PDF

The effect of strain rate on the instability of sheet metal (변형율속도가 판재의 불안정에 미치는 영향)

  • 백남주;한규택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.935-943
    • /
    • 1988
  • The forming limit diagram is assessed as a means of estimating the forming characteristics of sheet metal and is usually determined experimentally. The strain rates used in the determination are likely to be low. However, often in practice, the strain rates are much higher, so if forming limit diagram is determined at low rates, it may not be appropriate. This paper reconsiders the forming limit diagram for mild steel and aluminum sheet up to variation in strain rate from 10$^{-2}$ sec to 20/sec where its forming has been carried out under oil pressure using a hydraulic bulge test with circular and elliptical dies. To obtain higher strain rate, an impact bulge test had been employed with the same die sets as those used for a hydraulic bulge test. The results obtained are as follows: (1) As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. (2) Experiment has shown that, in the positive quadrant of the forming limit diagram, the diagram is lowered with increasing strain rate and the effect of strain rate changes according to strain paths and materials..