• Title/Summary/Keyword: Built-In Sensor

Search Result 509, Processing Time 0.032 seconds

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process (LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발)

  • Na, Cho Rok;Nam, Jung Soo;Song, Jun Yeob;Ha, Tae Ho;Kim, Hong Seok;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

A Novel Cylindrical Capacitive Sensor for both Radial and Axial Motion Measurements (반경 방향 및 축 방향 운동 동시 측정을 위한 새로운 원통형 정전용량 변위센서)

  • Ahn H.J.;Kim J.H.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.276-279
    • /
    • 2005
  • This paper presents a novel cylindrical capacitive sensor (CCS) for both radial and axial motion measurements. Although the new CCS has almost the same geometric configuration as the conventional CCS, the unused axial area of the CCS is utilized to measure the axial motion of the rotor, which can affords more compact design and reduction of the system complexity. First, a theoretical model of the proposed CCS is derived. Based on the derived theoretical model, compensation methods to decouple the radial and axial motion measurements are proposed. In addition, error analysis is performed and a design rule is proposed to guarantee the same accuracy in measuring both radial and axial motions. Finally, a test rig and electronics for the proposed CCS are built and the effectiveness of the proposed CCS is verified with experiments and simulations.

  • PDF

Formation of Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.203-209
    • /
    • 2001
  • This paper develops a control method for some generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors that cannot accurately measure absolute distances and directions of objects. That is, all the sensors have limitation on the range, and uncertainty in the values. Therefore, more robust and reliable control logic is proposed and implemented. The logic is developed considering generic situations and increasing the number of robots participating in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogeneous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The experiment results are analyzed quantitatively by using the data of the relative distances and angles between the robots. And the trajectories of the robots during the formation are also evaluated. The developed control approach is demonstrated with experiments to be successful and efficient for the formation of autonomous mobile robots.

  • PDF

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network (무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법)

  • Hong, Won-Kee;Shim, Woo-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

Synthesis of Li-doped NiO and its application of thermoelectric gas sensor (Li 도핑된 NiO 합성 및 열전식 수소센서에의 적용)

  • Han, Chi-Hwan;Han, Sang-Do;Kim, Byung-Kwon
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • Li-doped NiO was synthesized by molten salt method. $LiNO_3$-LiOH flux was used as a source for Li doping. $NiCl_2$ was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5:1 to 30:1 during the synthetic procedure and the Li doping amount of synthesized materials were found between 0.086-0.190 as a Li ion to Ni ion ratio. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies, however the lattice parameter decreased from 0.41769nm in pure NiO to 0.41271nm as Li doping amount increased. Hydrogen gas sensors were fabricated using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs $H_2$ concentration was checked up to 4% of $H_2$ in air (as higher concentrations above 4.65% are explosive in air) using Li doped NiO of Li ion/Ni ion=0.111 as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. There was minimum interference of other gases and hence $H_2$ gas can easily be detected.

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung;Kim, Hyung-Hoon;Park, Deog-Su;Chang, Seung-Cheol;Go, Jeung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4215-4220
    • /
    • 2011
  • This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

Study on Applicability of the Vehicle Detection Using a Coil Sensor (코일센서를 이용한 차량검지기 적용성에 대한 연구)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo;Kim, Nam-Sun;Lee, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.14-23
    • /
    • 2015
  • This study was intended to evaluate the feasibility of the vehicle detector using a coil sensor. For the evaluation, the research team built a test environment for the detector consisting of a oscillation circuit, data collecting circuit, data monitoring and saving circuit, etc. As the result of the frequency analysis of the detector from the test environment, it was verified for the detector using a coil sensor to generate stable frequencies. In addition, the ease of construction and management was tested by comparing the size of cutting areas, consumption of installation materials, and installation time for a traditional loop detector and the detector using a coil sensor. As a result, the installation of the detector using a coil sensor requires less size of cutting areas, consumption of installation materials, and installation time.