• Title/Summary/Keyword: Built­Up beam

Search Result 77, Processing Time 0.026 seconds

Light-gauge composite floor beam with self-drilling screw shear connector: experimental study

  • Erdelyi, Szilvia;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.255-274
    • /
    • 2009
  • This paper presents an experimental study of a newly developed composite floor system, built up from thin-walled C-profiles and upper concrete deck. Trapezoidal sheeting provides the formwork and the fastening of the sheet transmits the shear forces between the C-profiles and the deck. The modified formation of the standard self-drilling screw in the beam-to-sheet connection is applied as shear connector. Push-out tests are completed to study the composite behaviour of the different connection arrangements. On the basis of the test results the behaviour is characterized by the observed failure modes. The design values of the connection stiffness and strength are calculated by the recommendation of Eurocode 4. In the next phase of the experimental study six full-scale composite beams are tested. The global geometry is based on the proposed geometry of the developed floor system. The applied shear connections are selected as the most efficient arrangements obtained from the push-out tests. The experimental behaviour of the composite beams are discussed and evaluated. As a conclusion of the experimental study the Eurocode 4 plastic design method is validated for the developed composite floor.

Study on the Torque Estimation of Bolting-Connection Overlapping Beam using the PZT Sensor (압전소자를 이용한 볼트 체결 겹침 보의 토크추정에 관한 연구)

  • Hong, Yong;Hong, Dong-Pyo;Han, Su-Hyun;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.850-853
    • /
    • 2006
  • This paper presents a primary study for a new method of enhancing measurement using impedance analysis method, which is widely used for structure health monitoring. Many of skyscrapers, bridges, tunnels, which have been built up several years, and nearly reached their operating life due to aging crack, material deterioration, and so on. therefore, the health monitoring technique has obtained considerable attention. The usage of the PZT sensor is proposed, and the coupling torque of bolt-connection overlapping beam is assumed. By using the torque wrench, it is easy to apply torque of different values to each bolt. The coupling torque is adjusted gradually from $3N{\cdot}m\;to\;0N{\cdot}m$ with the decrement of $1N{\cdot}m$. Simultaneously, the impedance peak variation is measured. The peak frequency variation can be determined through the change of bolt coupling torque.

  • PDF

Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system

  • Farag, Mousa M.N.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.195-219
    • /
    • 2015
  • A partial (hybrid) seismic isolation scheme for precast girder bridges in the form of a "buffer-gap-elastomeric bearings" system has been endorsed in the literature as an efficient seismic design system. However, no guides exist to detail an optimal gap size for different configurations. A numerical study is established herein for different scenarios according to Euro code seismic requirements in order to develop guidelines for the selection of optimal buffer-gap arrangements for various design cases. Various schemes are hence designed for ductile and limited ductility behavior of the bridge piers for different seismic demand levels. Seven real ground records are selected to perform incremental dynamic analysis of the bridges up to failure. Bridges with typical short and high piers are studied; and different values of initial gaps at piers are also investigated varying from a zero gap (i.e., fully locked) condition up to an initial gap at piers that is three quarters the gap left at abutments. Among the main conclusions is that the as-built initial gaps at piers (and especially large gap sizes that are ${\geq}1/2$ as-built gaps at abutments) do not practically reduce the seismic design demand and do not affect the reserve capacity of the bridge against failure for bridges featuring long piers, especially when these bridges are designed a priori for ductile behavior. To the contrary, the "buffer-gap-elastomeric bearings" system is more effective for the bridge schemes with short piers having a large difference between the stiffness of the bearings and that of their supporting (much stiffer) squat piers, particularly for designs with limited ductility. Such effectiveness is even amplified for the case of larger initial as-built gap sizes at piers.

Development of Engineered Wood using Mechanical Jointing Methods with Large Elements (대형요소의 기계적 접합법을 이용한 공학목재 개발)

  • Park, Joo-Saeng;Shim, Kug-Bo;Kim, Kwang-Mo;Park, Moon-Jae;Cho, Sung-Taig;Kim, Wae-Jung
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2006
  • In this study, new engineered woods, which can be used as structural members, are developed using three different mechanical jointing methods with large elements produced from logs in a high yield. Flitches of relatively large cross-section are produced from small or medium diameter logs, and are joined with steel bolts, wood dowesl and steel lag bolts. Static bending tests are performed for these three types of built-up beams. Built-up beams joined with steel bolts show $514kgf/cm^2$ for MOR and $129,000kgf/cm^2$ for MOE, which are close to those of typical structural glulams. In case that wood dowels and steel lag bolts are used, elements are isolated as load increases and resists the applied load individually. Therefore, built-up beams joined with wood dowels or steel lag bolts show almost half of steel bolts for both MOE and MOR. From the results of this study, it was indicated that bending properties of engineered woods manufactured using mechanical jointing methods with large elements are influenced mainly by jointing performance between each elements.

  • PDF

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Structural Characteristics of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조특성)

  • Lee, Seong Hui;Jung, Hun Mo;Kim, Dae Jung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.711-722
    • /
    • 2008
  • Existing tube for concrete filled tubular structure is made through welding of four plates irrespective of tube thickness, so production performance is poor and special welding technique is needed to weld the internal diaphragm and through the diaphragm. Therefore, through manufacturing by cold forming development of beam to column connections that is no welding in position of stress concentration is needed. In this study the proposal of beam to column connections details and to making tube specimens by method of bending steel plates, we want to know the compositeeffect between internal anchor and concrete by processing on stress distribution and internal force evaluation of concrete filled tube beam to column connections with a variable of flange welding existence between column and beam, welding quantity between column and diaphragm, existence of concrete in tube, column with diaphragm and general column.

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

Study on Fire Performance of Stud Connectors (스터드커넥터의 내화성능에 관한 연구)

  • Kim, Sung-Bae;Han, Sang-Hoon;Choi, Seng-Kwan
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2009
  • This research aims to conduct a pilot study for the in-fire performance of headed studs, commonly used in composite structures over the world. The robustness of the shear studs in fire appears to be a key element to govern the composite behaviour after a sudden local instability developed in structures such as trusses and cellular beams. In order to experimentally evaluate the residual strength of studs in fire, the standard push-out test was modified for a half of the original set-up to be equipped with a furnace. The adjustments allow the steel section to have a 3-sided exposure against fire. Under the Standard ISO fire, the modified push-out tests under loading were conducted to identify the failure mechanism of the studs in relation to temperature developments.

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

Improvement of Cutting Performance of DLC Coated WC against Al Alloy (DLC박막을 코팅한 초경공구의 Al합금에 대한 절삭성능 향상)

  • Lee, K.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.66-71
    • /
    • 2008
  • Diamond-like-carbon (DLC) coatings could be good candidates as solid lubricants for cutting tools in dry machining of aluminum alloy. In this work, DLC thin films were produced as a friction reduction coating for WC-Co insert tip using the plasma immersion ion beam deposition (PIIED) technique. DLC coatings were also coated on $Al_2O_3$ specimens and high temperature wear tested up to $400^{\circ}C$ in dry air to observe the survivability of the DLC coating in simulated severe cutting conditions using a pin-on-disc tribotester with Hertzian contact stress of 1.3GPa. It showed reduced friction coefficients of minimum 0.02 up to $400^{\circ}C$. And cutting performance of DLC coated WC-Co insert tips to Al 6061 alloy were conducted in a high speed machining center. The main problems of built-up edge formation in aluminum machining are drastically reduced with improved surface roughness. The improvements were mainly related to the low friction coefficient of DLC to Al alloy and the anti-adhesion of Al alloy to WE due to the inertness of DLC.

  • PDF