• Title/Summary/Keyword: Buildings Energy Consumption

Search Result 518, Processing Time 0.024 seconds

A Study on the Energy Consumption Characteristics for Use and Operation Period in Office Buildings (업무용 건물의 용도 및 운전 기간별 에너지 소비 특성 연구)

  • Park, Byung Hun;Kim, Si Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.605-611
    • /
    • 2017
  • The purpose of this study is to calculate the energy consumption rate based on data regarding energy use in office buildings, and to confirm the general characteristics of energy consumption. The energy consumption rate of the building is calculated by dividing the energy consumption by the floor area. The energy consumption rate of small-sized office buildings was calculated as $101.48{\sim}201.55kWh/m^2{\cdot}year$ and in the case of medium-sized buildings, the range was $92.77{\sim}177.89kWh/m^2{\cdot}year$. In the case of small buildings, it was found that the energy consumption was $73.24kWh/m^2{\cdot}year$ in electronic device, $34.31kWh/m^2{\cdot}year$ in hot water supply, and $18.37kWh/m^2{\cdot}year$ in heating. In the case of medium-sized buildings, electronic devices was $73.08kWh/m^2{\cdot}year$, lighting was $18.35kWh/m^2{\cdot}year$ and heating, $15.37kWh/m^2{\cdot}year$. In all of the study buildings, the peak heating energy use was observed from 8:00 a.m. to 10:00 a.m during the winter, and the peak power management was required. Energy use at and around the midnight hour is confirmed to be 40~60% of weekly working hours, so it is necessary to manage power use at night time as well as during the day. In order to improve the accuracy of future studies, it is necessary to make efforts to secure the data with standardized energy measuring units for the various type of buildings.

Survey and Analysis of Power Energy Usage of University Buildings (대학건축물의 전력에너지 사용량 조사 및 분석)

  • Youn, Nam Sik;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • For the past seven years, the increase in the energy consumption of universities in Korea has been 3.7 times higher than the overall increase in the energy consumption across Korea (22.5%). This is an example that shows that universities have been a massive source of greenhouse gases. Such an increase has been attributed to the new and expanded construction of architectural structures on campus. Many people argue that the increasing number of buildings may cause waste of energy and loss of efficiency. Therefore, this study was conducted as a preliminary study to derive energy efficiency measures for new university buildings. The two aspects of energy-saving as required by the eco-friendly structure certification standards have been applied to analyze the use of new/renewable energy and the energy consumption of new university buildings that have applied light density and light engineering methods. Based on these results, the major sources of energy of existing buildings and new university buildings were compared to comparatively discuss how effectively they improve energy performance.

A Study on Sensitivity to Temperature of Electricity Consumption in School Buildings (학교 건축물 전력소비의 기온감응도에 관한 연구)

  • Kim, Tae-Woo;Lee, Kang-Guk;Kim, Ho-Soon;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.5
    • /
    • pp.13-21
    • /
    • 2011
  • In case of school buildings, energy consumption has been noticeably on the increase, along with the changes in outdoor temperature triggered by the improvement in national economic development and educational environments. Research on the characteristics of energy consumption in school buildings influenced by the changes in outdoor temperature is considered very significant in social aspects in that it will be fundamental to the suggestion of the alternatives, such as saving energy consumption in construction buildings and control of emitting carbon dioxide. In this regard, this study examined sensitivity to temperature of power consumption in school buildings, based on the changes of outdoor temperature for the past five years in the target buildings of elementary, middle and high schools and the amount of energy consumption. From the results, it has been believed that this study was very significant in terms of figuring out a quantitative, optimum level of energy consumption, maintenance of pleasant environments and functions, and the necessity of effective energy use and management in school buildings.

  • PDF

Mobile application to evaluate existing university buildings using building information

  • Chung, Min-Hee
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.13-20
    • /
    • 2016
  • Purpose: The purpose of this study is to provide information on building's energy consumption and efficiency for general building users through a mobile application. Method: This paper presents a mobile application process and building energy assessment models for general users to understand easily. There are two assessment models, one is based on the energy consumption. The other is based on the architectural planning factors of a building. The assessment models are proposed to understand buildings' energy efficiency and to compare the energy consumption level for general users. The applicability of proposed application has been evaluated by conducting a case study. The case study is targeting university buildings. Result: Energy efficiency potentials were proposed using weighting factor which was calculated by the impact on energy consumption of a building according to parameters. The mobile application used the simple energy assessment model by energy efficiency potentials and was developed for a smartphone By using the mobile application, numerous general users of smartphones can easily and conveniently access information pertaining to buildings, energy consumption, and reductions in energy consumption. The proposed application enables user to find more energy efficient buildings by comparing energy status and energy efficiency potential by given information.

Low-energy Tall Buildings? Room for Improvement as Demonstrated by New York City Energy Benchmarking Data

  • Leung, Luke;Ray, Stephen D.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.285-291
    • /
    • 2013
  • This paper proposes a framework for understanding the energy consumption differences between tall and low-rise buildings. Energy usage data from 706 office buildings in New York illustrates expected correlations from the framework. Notable correlations include: taller buildings tend to use more energy until a plateau at 30~39 floors; tall buildings in Manhattan use 20% more energy than low-rise buildings in Manhattan, while tall buildings outside Manhattan use 4% more energy than low-rise buildings outside Manhattan. Additional correlations are discussed, among which is the trend that the Energy Star program in New York City assigns higher ratings to tall buildings with higher EUIs than low-rise buildings with the same EUI. Since Energy Star is based on regressions of existing buildings, the Energy Star ratings suggest taller buildings have higher EUIs than shorter buildings, which is confirmed by the New York City energy benchmarking data.

Estimation Method of Energy Consumption by End-Use in Office Buildings based on the Measurement Data (계측데이터를 이용한 업무시설에서의 에너지용도별 사용량 추정방법 연구)

  • Kim, Sung-Im;Yang, In-Ho;Ha, Soo-Yeon;Lee, Soo-Jin;Jin, Hye-Sun;Suh, In-Ae;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.165-176
    • /
    • 2020
  • The purpose of this study is to develop a estimation method of energy consumption by end-use in office buildings. For this, the current status of information on building energy use was investigated, and the domestic and foreign literature on the classification of energy use in non-residential buildings and the estimation method of energy use were reviewed. In addition, the characteristics of energy consumption by end-use were analyzed with measurement data of 48 office buildings in Seoul. As results, the annual and monthly estimation method of energy consumption by end-use in office buildings using public and measurement data was presented, and the applicability of the estimation method was examined by applying to sample office buildings.

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

An Analysis on the Energy Consumption Unit of the Public buildings in Daegu (대구시 공공건축물의 에너지 소비 원단위에 관한 연구)

  • Choe, Jeong-Hui;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.319-322
    • /
    • 2005
  • An energy problem has become one of the many Problems awaiting solution to human society. Energy needs to support not only industry, but also building in city. The types of residential building, office building and public building account for much proportion among the totally amount used energy. A public institution shows a fine example for an energy conservation in the present situation. But, the amount used energy of electricity, air-conditioning and heating is different from a building use and condition. Because the building data of the energy consumption by a load is insufficient, it is unable to select a proper energy source. According to this study, it analyzed an energy load by each building that had investigated the actual conditions of energy consumption about public buildings in Daegu City. In order to plan the efficient energy use both existing buildings and new buildings, this study will present the efficient energy use plan, which has operated to new buildings of a public institution, at present.

  • PDF

The measurement study on the airtightness of dwellings based on the passive design (패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구)

  • Lee, Tae-Goo;Yun, Doo-Young
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

A Study on the Energy Consumption Analysis and Improvement of Busan City Public Building (부산시 공공건축물의 에너지사용량 분석 및 개선방안 연구)

  • Kim, Sam-Uel;Kim, Se-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The energy used in Korea is strongly dependent on that produced by foreign countries. Accordingly, saving energy is more important than ever, because of the rise of international oil prices and depletion of oil resources. The development of energy efficient buildings is required especially for public buildings in Korea. In this study, the energy use of public buildings is identified. Then, the analysis of energy usage through regional offices in Busan City offers energy saving measures for public buildings.