• Title/Summary/Keyword: Building wind

Search Result 1,148, Processing Time 0.028 seconds

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

The Symbolic System and Architectural Expression of the Zhōuyì Inherent in Taekpungdang of Taekdang Lee Sik (택당 이식의 택풍당에 내재된 『주역』의 상징체계와 건축 표현)

  • Nam, Chang-Keun;Choi, Jeong-Jun
    • Journal of architectural history
    • /
    • v.32 no.4
    • /
    • pp.19-33
    • /
    • 2023
  • This study investigated the architectural expression of Taekpungdang(澤風堂, The Pond and Wind House) built by the Neo-Confucianist Taekdang Lee Sik(澤堂 李植, 1584~1647) from the perspective of the symbolic system of the Zhōuyì(『周易』, Classic of Changes). This study examined the historical context, personal history, and construction process of Taekpungdang at the time of its creation through his collection of writings, the Taekdanggip(澤堂集). The study also estimated the original form of Taekpungdang through field surveys and historical evidence. In addition, the architectural principles and architectural expressions inherent in the Taekpungdang were derived based on the symbolic system of "taekpungdaegwa"(澤風大過) which is Lee Sik's divination and one of the 64 trigrams in the Zhōuyì. Lee Sik, who was knowledgeable in the Zhōuyì, used divination to cope with the chaotic political situation and his own misfortunes. Accordingly, He determined the direction of his life and planned the surrounding environment, architectural structure, and form of Taekpungdang based on the rules and meanings of his divination system. He embodied the architectural space of Taekpungdang with the concept of time and space inherent in the divination of "daegwa",(大過, great exceeding). In addition, he expressed the principle of the generation of palgue,(八卦, the eight trigrams for divination) and the principle of the co-prosperity of ohaeng(五行, the five elements) through the composition of walls and windows of the house. The images of Taekpungdaegwae, which are dongyo(棟撓 wood submerged in the pond) and taekmyeolmok(澤滅木, shaking pillars), were manifested in the form of buildings. Therefore, Taekpungdang can be considered a remarkable example of a building designed through the thorough utilization of the Zhōuyì divination system.

A location analysis of Korean traditional housing and farm village based on the Eagi(理氣)theory in Feng Shui : Case study on the head family house of Mr. Kim located in Uisung County, Kyongsang Province (한국농촌지역 전통주택과 마을입지의 이기풍수(理氣風水) 해석 - 의성 김씨 종택을 중심으로 -)

  • Kwon, Y.H
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.11 no.1
    • /
    • pp.3-19
    • /
    • 2009
  • The purpose of this study was to systemize the 'Eagi(理氣)' theory in Feng Shui which has been neglected in Korea because of its difficulties in the current Feng Shui theory and to make it easier to apply in the art of placement. The study also analysed the characteristics of the location of a sample village in terms of Feng Shui. Besides the placement analysis, the interpretation of the Yangtaek(陽宅) theory was analysed on the layout of the outdoor space of the building. As the initial step, various theories about Feng Shui were investigated. Based on those, the framework of the Feng Shui theory was summarized for application to the case study. Yangtaeksamyo(陽宅三要) was referred to for consideration of Feng Shui theory outside the residential buildings. At the same time, configurational analysis of the ground was carried out with the naked eye and actual measurements were taken using a specific compass(佩鐵). The results were summarized as follows : First, the 'Eagi' theory in Feng Shui, which finds a 'lucky site(穴)' selects the 'geomagnetic aspect(坐向)' by analyzing the natural forces of wind and water. In this theory, the aspect was regarded of most importance. 'Yangtaek Feng Shui (陽宅風水)' was the theory that people's ups and downs depends on the direction of the place where they live on, and was developed on the basis of 'I ching(周易)'. Second, the village and the house in the case study have been considered as lucky places from old times and this was equally verified by the 'Eagi (理氣)' theory and the "Yangtaek (陽宅)' theory.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Development of a Work Environment Monitoring System for Improving HSE and Production Information Management Within a Shipyard Based on Wireless Communication (무선 통신 기반 조선소 내 HSE 및 생산정보 관리 향상을 위한 작업환경 모니터링 시스템 개발)

  • Chunsik Shim;Jaeseon Yum;Kangho Kim;Daseul Jeong;Hwanseok Gim;Donggeon Kim;Donghyun Lee;Yerin Cho;Byeonghwa Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.367-374
    • /
    • 2023
  • As the Fourth Industrial Revolution accelerating, countries worldwide are developing technologies to digitize and automate various industrial sectors. Building smart factories not only reduces costs through improved process productivity but also allows for preemptive identification and removal of risk factors through the practice of Health, Safety, and Environment (HSE) management, thereby reducing industrial accident risks. In this study, we visualized pressure, temperature, power, and wind speed data measured in real-time via a monitoring GUI, enabling field managers and workers to easily access related information. Through the work environment monitoring system developed in this study, it is possible to conduct economic analysis on per-unit basis, based on the digitization of production management elements and the tracking of required resources. By implementing HSE in shipyards, potential risk factors can be improved, and gas and electrical leaks can be identified, which are expected to reduce production costs.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff (강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안)

  • Kim, Dongkyun;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.795-805
    • /
    • 2021
  • In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

Experimental Study for the Capacity of Ordinary and Emergency Ventilation System in Deeply Underground Subway Station (대심도 지하역사 승강장 및 대합실 평상시/비상시 급·배기 풍량에 대한 실험적 연구)

  • Jang, Yong-Jun;Lee, Ho-Seok;Park, Duck-Shin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2012
  • Shin-gumho station in Seoul underground subway have been selected to be experimentally investigated and analyzed for the real air supply & exhaust capacity compared to the original capacity of ordinary and emergency condition. The depth of Shin-gumho station is 43.6m which consists of the island-type platform ($8^{th}$ floor in underground) and a two-story lobby (first & second floor in underground). An emergency staircase connects between the platform and the lobby. Hot-wire anemometer, capture hood, wind vane & velocity meter and data acquisition systems are employed to perform the automatic measurement in this experiment. For ordinary case, air supply and exhaust capacity in the lobby were reduced by 34% and 46% compared to the original capacity, respectively. Air supply and exhaust capacity in the platform were reduced by 66% and 38%, respectively. For emergency case, air supply in the lobby was reduced by 42% and air exhaust in the platform was reduced by 28% compared to the original capacity. Therefore, air pollution in the station is expected to be worse in the ordinary environment and smoke control capability in the platform will be weakened in case of fire emergency.

A Study on Design and Construction Methods of Movable Pavilions (이동식 정자의 설계 시공법 연구)

  • Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • This study aims to examine the design and construction methods of movable Pavilions. Through the literature analysis, the setting up of the construction background, location and direction, size and composition, materials and construction methods were analyzed. The results are as follows; First, the movable pavilion is designed to enjoy a wide range of views. It was a creation that reflected the way in which the ideal life was pursued based on the experience of enjoying scenery rather than owning one's own house and running a pavilion. Second, the formation of movable pavilion was intended to enjoy the scenery by season without restrictions on time and place. It can also relieve the hassle of having to move tools to enjoy the wind every time. Third, the movable pavilion faces to a place with good scenery and determines its position and direction. Most of them were built on a small scale and divided the space for viewing the scenery, playing GO(Baduk), writing poems, and playing musical instruments. Also, wood was used mainly. To reduce the load, roofs and walls were constructed with light materials such as bamboo, straw, thick sheet of oil, and cotton cloth. The construction method was mainly used by the method of fastening for easy coupling and dismantling. When a building was constructed on the upper part of a ship or cart, the wooden structure of a regular pavilion was constructed. Fourth, when comparing the design and construction characteristics of ordinary pavilion and movable pavilion, the movable pavilion is easy to see for contrast purposes, so there is no limit to setting the location and direction. Instead, more stringent systems and techniques were called for, because as mobility forces should be considered, structurally measures to withstand loads, and they should satisfy their function and form as pavilion.