• Title/Summary/Keyword: Building vibration

Search Result 1,132, Processing Time 0.026 seconds

Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use

  • Park, S.J.;Lee, J.;Jung, H.J.;Jang, D.D.;Kim, S.D.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.313-332
    • /
    • 2009
  • This paper numerically and experimentally investigates the control performance of the active mass damper (AMD) systems in a 26-story high-rise building in use. This is the first full-scale application of the AMD system for suppressing the wind-induced vibration of a building structure in Korea. In addition, the AMD system was installed on top of the building already in use, which may be the world's first implementation case. In order to simultaneously mitigate the transverse-torsional coupled vibration of the building, two AMD systems were applied. Moreover, the H-infinity control algorithm has been developed to utilize the maximum capacity of the AMD system. From the results of numerical simulation using the wind load obtained from the wind tunnel tests, it was found that the maximum acceleration responses of the building were reduced significantly. Moreover, the control performance of the installed AMD system was examined by carrying out the free and forced vibration tests. The acceleration responses on top of the building in the controlled case measured under strong wind loads were compared with those in the uncontrolled case numerically simulated by using the wind load deduced from the measured data and a structural model of the building. It is demonstrated that the AMD system shows good control performance in reducing the building accelerations.

Ambient Vibration Measurement of Buildings Horizontal Vibration Using a Mobile Phone Application (휴대폰 앱을 이용한 건물 수평진동의 상시진동계측)

  • Moon, Sang-Hyouen;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • The cases of conducting the vibration measurement using the mobile phone with regard to the building's horizontal vibration are very rare in Korea and foreign countries. Therefore, this study analyzed the horizontal vibration nature of the building using the mobile phone targeting 5 tall buildings, and reviewed about the applicability of the mobile phone vibration measuring instrument through the comparison/verification with the data of the existing vibration measuring instrument. The peak of the measured time series waveform was measured clearly and it showed a similar value to the existing natural frequency.

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.

A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material (점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-68
    • /
    • 2006
  • In this thesis, a full-scale K shape damper test model was constructed in which a passive vibration control system. This passive vibration control system was incorporated with the use of a newly developed turbulent flow damper sealed by viscoelastic material. A series of tests and earthquake observation has been conducted in this test model. The purpose of the present thesis is to investigate the vibration response characteristics of the building and to verify the effectiveness of the vibration control system. By the static loading test, it was recognized that incorporation of the dampers had little influence on static horizontal stiffness of the building. Free vibration tests revealed that the dampers incorporated increased the damping ratio of the building up to 3 times compared with the undamped case. The effectiveness of the developed vibration control system was confirmed based on the excitation tests and earthquake response observation.

  • PDF

Serviceability assessment of subway induced vibration of a frame structure using FEM

  • Ling, Yuhong;Gu, Jingxin;Yang, T.Y.;Liu, Rui;Huang, Yeming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • It is necessary to predict subway induced vibration if a new subway is to be built. To obtain the vibration response reliably, a three-dimensional (3D) FEM model, consisting of the tunnel, the soil, the subway load and the building above, is established in MIDAS GTS NX. For this study, it is a six-story frame structure built above line 3 of Guangzhou metro. The entire modeling process is described in detail, including the simplification of the carriage load and the determination of model parameters. Vibration measurements have been performed on the site of the building and the model is verified with the collected data. The predicted and measured vibration response are used together to assess vibration level due to the subway traffic in the building. The No.1 building can meet work and residence comfort requirement. This study demonstrates the applicability of the numerical train-tunnel-soil-structure model for the serviceability assessment of subway induced vibration and aims to provide practical references for engineering applications.

Study on Vibration Perception by Visual Sensation Considering Probability of Seeing

  • Kawana, Seizou;Tamura, Yukio;Matsui, Masahiro
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.283-300
    • /
    • 2012
  • Wind-induced vibrations of buildings can be perceived when movement of objects caused by the vibration is seen. However, movement of objects that would normally be expected to trigger visual perception of building vibrations is not necessarily seen in actual building environments. Therefore, to evaluate habitability to building vibrations, it is necessary to examine the influence of movement of objects on vibration perception taking into account probability of seeing the objects. As the first step in this study, those data necessary to estimate probability of vibration perception from seeing of swaying objects have been measured during normal activities in actual buildings. In addition, statistical analysis of the data has also been carried out. As the second step in this study, the probability distribution of vibration perception by visual sensation is estimated using the series of data measured in the first step. Probability of seeing object is considered in the estimated probability distribution.

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

The dynamic response prediction of the structure by transient vibration using Semi-Empirical Method (준 경험적 방법을 이용한 충격성 진동에 대한 구조물의 동적 응답의 예측)

  • Lee, Hong-Ki;Baek, Jae-Ho;Kim, Kang-Boo;Woun, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1945-1950
    • /
    • 2000
  • When one build a building that posses Precison production process to be sensitive to vibration and SMD to procuce a large dynamic force, how do one predict & answer vibration control problem at building structure design at first stage, That is a question. It has tried to predict dynamic response and establish answering about global or local dynamic problem in building using experimental and analysis method. One of such a try, it be proposed Semi-Empirial Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of real-structure. In this paper, the dynamic response problem about RC-structure building that will be set-up SMD produce large transient dynamic force using Semi-Empirical Method.

  • PDF

Evaluation on Vibration Characteristics of an Apartment Building Structure (아파트 구조물의 진동특성 평가에 관한 연구)

  • Choi, Chang-Sik;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • A problem of frequency in the field of low-frequencies such as high-rise apartment building or construction vibration are often found. In this study, damage reason of a 25 stories apartment building was searched on the basis of actual damage. To find the damage reason, structural design procedure were reviewed and low-frequency vibration test was conducted. The results indicate that the main damage reason is not by the low-frequency vibration but the asymmetrical plan of that building.

  • PDF

Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석)

  • 김일중;오숙경;이효진;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF