• Title/Summary/Keyword: Building integrated PV

Search Result 115, Processing Time 0.026 seconds

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof (절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조)

  • Eunbi Lee;Min-Joon Park;Minseob Kim;Jinho Shin;Sungmin Youn
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

Analysis of Thermal and Optical Characteristic of Semi-transparent Module according to Various Types of the Backside Glass (후면 유리 종류에 따른 투과형 태양광발전모듈의 열 및 광 특성 분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Kim, Kyung-Su;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.263-268
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. This study investigates a semitransparent PV module that is designed as finished material for windows. Therefore it needs to considerate about the optical characteristics of the transparent module. It reports the effect of thermal and optical characteristics of the PV module on generation performance. The study was performed by measuring sun spectrum and luminance through the PV modules and by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF

Demonstration Study of 10kW Poly Metal Panel integrated PV Module (10kW급 지붕재용 태양전지모듈 실증연구)

  • Yi, So-Mi;Noh, Ji-Hee;Joo, Man-Sic
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.246-249
    • /
    • 2007
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are sol id state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, this paper describes a design and performance test of the 10kW poly metal pv module(pmpp) system. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module installation.

  • PDF

Analysis of Performance of Building Integrated PV System of Cold Facade type (Cold facade형 BIPV시스템의 발전성능 분석)

  • Kim, Hyun-II;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Shu, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

A Study on the Development of PV Application for Apartment Buildings (공동주택을 위한 PV 시스템 적용기법 개발 연구)

  • Noh, Ji-Hee;Yoon, Chul;Yi, So-Mi;Joo, Man-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.269-274
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient, solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. Recently, many of the apartment housings are built in domestic country. The apartment buildings have been constructed since early of 1970's. now apartment is taking over 50% out of entire housing in korea. The apartment housing applying to a photovoltaic system has been extensively studied in the foreign country but our county runs short. So, It was necessary to technical development of PV application which is suitable in Korean house culture. The objective of this study is to develop the building integrated PV application method for apartment building.

  • PDF

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

The Experimental Study on the Application of the Insulated Glass PV Module in the Curtain Wall (단열 복층유리 PV의 커튼 월 적용 가능성에 관한 실험적 연구)

  • Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.63-69
    • /
    • 2006
  • In order to positively cope with the international environmental regulations like UNFCCC (UN Framework Convention on Climate Change) and to overcome energy crisis Korea, who depends on import for more than 97% of required energy, needs to continuously proceed to development, spread and expansion of alternativeenergy and then, to cultivate the capacity to keep the balance of demand and supply of energy by itself. In this aspect, the technology of BIPV (Building Integrated Photovoltaic) is the field that the world is most interested in. However, at present, this technology is centered on increasing the efficiency of the module itself so it has lots of problems to be applied to buildings. Application of the integrated PV system in building external curtain wall can obtain much more generation of electric power than in roof-types whose area for installation is restricted, so it is excellent in terms of its possibility of application. Therefore, this paper intends to advance its practical use by proposing how to get integrated PV system which can be applied to building external curtain wall, and how to apply it.

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Characteristic Analysis of BIPV Module according to Rear Materials (후면부재에 따른 BIPV 모듈의 특성 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.