• Title/Summary/Keyword: Building fire

Search Result 1,763, Processing Time 0.023 seconds

A Study on the Changes in the Back Garden of Gyeongbokgung Palace during Cheongwadae Period through an Interview with Landscape Manager (조경 관리자 인터뷰를 통한 청와대 시기 경복궁 후원의 변화에 관한 연구)

  • Kim, Kyu-Yeon;Lee, Shi-Young;Choi, Jaehyuck;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.2
    • /
    • pp.26-34
    • /
    • 2023
  • This study conducted interviews with former and current managers of Cheongwadae landscape architecture to provide basic information necessary to preserve, manage, and utilize Gyeongbokgung Palace's back garden, and the main conclusions summarized are as follows. First, the topography changed a lot with the construction of the main building and the official residence under President Roh Tae-woo. The water system was connected to Gyeongbokgung Palace in the past, but is now disconnected. Second, in the case of planting, the most important principles were the president's security and protocol, and accordingly, trees were placed or managed. Trees were planted by introducing excellent trees in various regions, and wildflowers and ground cover plants were frequently replaced according to the season. Third, facilities and roads were arranged for the president's protocol, hobbies, and workers' rest, and fire-fighting facilities were installed to prevent disaster in the forest area of Baegaksan Mountain. Fourth, the biggest inflection point of Gyeongbokgung Palace's back garden during Cheongwadae period was the change in topography due to the new construction of the main building and official residence during President Roh Tae-woo, the removal of A and B barbed wire fences that separated space during President Roh Moo-hyun, and the extensive landscaping carried out for the G20 Summit under President Lee Myung-bak. The area of Gyeongbokgung Palace's back garden is expected to face another inflection point due to the opening of Cheongwadae on May 10, 2022, and the work of evaluating the historical, academic, and landscape values of Gyeongbokgung Palace's back garden should be carried out while preserving the status.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

Analysis regarding the Environmental Impact of the Life Cycle of Housing Complexes in Korea (국내 주거 단지에 대한 전과정 환경영향 분석)

  • Choi, Doo-Sung;Jeon, Hung-Chan;Cho, Kyun-Hyong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study on condominium complex will adopt the quantitative assessment of the influence on the environment throughout the entire life cycle of buildings. This paper applies input-out analysis in order to analyse embodied energy regarding input of materials at material production phase. Also, it calculates environment load at use and demolition and destruction Phases of buildings as analysing energy consumption. The study categorises environment load as six impact categories and undertakes environmental impact evaluation. The consequence shows that the environment load of multi-unit dwelling takes up 88.2% out of the entire environment load of condominium complex. Also, as a result of analyzing the environmental impact of the life cycle of condominium buildings, it was found that such environmental impact comprised of about 11.96% of all industries in Korea that had an environmental impact.

Evaluation of structural operativity of two strategic buildings through Seismic Model

  • Foti, Dora;Giannoccaro, Nicola Ivan;Greco, Pierluigi;Lerna, Michela;Paolicelli, Raffaele;Vacca, Vitantonio
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • This paper presents the experimental application of a new method for seismic vulnerability assessment of buildings recently introduced in literature, the SMAV (Seismic Model Ambient Vibration) methodology with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. They do not suffer such damage as to compromise the operation within a framework of assessment of the overall capacity of the urban system. To this end, for the characterization of their operational vulnerability, a Structural Operational Index (IOPS) has been considered. In particular, the dynamic environmental vibrations of the two considered strategic buildings, the fire station and the town hall building of a small town in the South of Italy, have been monitored by positioning accelerometers in well-defined points. These measurements were processed through modern Operational Modal Analysis techniques (OMA) in order to identify natural frequencies and modal shapes. Once these parameters have been determined, the structural operational efficiency index of the buildings has been determined evaluating the seismic vulnerability of the strategic structures analyzed. his study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake.

Efficiency Analysis of Tower Crane Lifting Work for Project Management of Construction (건축공사의 공정관리를 위한 타워크레인 양중 효율성 분석)

  • Bae, Jeong-Hyeon;Kim, Ki-Hyuk;Lee, Donghoon
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Building Construction projects are getting higher and larger. Therefore, the use of Tower Crane, which is more productive than any other lifting plan shows a trend of continuous increases. However as equipment for transporting heavy goods, are is too expensive for the monthly rent and used inefficiently for construction. site so it is analyzed that it has problems of reducing productivity and efficiency of lifting work. Inefficient situations are arising like poor communications between operator and worker, occurrence of blind spots, securing the shortest distance of fire during movement after lifting plan, influences of weather, location of materials, movement radius of tower crane by each locations and ever-changing working environments. Therefore, in this study, we first made a list of tower cranes that are inefficiently used at the site, and then we made a checklist. After that, through field visits, we derived checklist for Tower Crane to comprehensive data value.

Numerical Simulation of the Evolution and Structure of a Single Vortex in Reacting and Non-reacting Jet Flow Fields (반응 및 비반응 제트 유동장에서 단일 와동의 전개 및 구조에 대한 수치모사)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Chang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.28-37
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the evolution and vortical structure of a single vortex in reacting and non-reacting jet flow fields. A predictor-corrector-type numerical scheme with a low Mach number approximation was used, and a two-step global reaction mechanism was adopted as the combustion model. Through the comparisons of single vortex behaviors in reacting and non-reacting jet flow fields, it was found that the evolution characteristics and vortical structure of the single vortex were significantly influenced by a outer vortex that was generated from the buoyance effect as well as the chemical heat release. Furthermore, it was also identified that the differences of the vortical structure in reacting and non-reacting jet flow fields were mainly attributed to the thermal expansion, Baroclinic torque and buoyance effect.

Sound absorption characteristics of foamed aluminum considering installing on the wall and in the space (발포알루미늄의 시공방법에 따른 흡음 특성에 관한 연구)

  • Park, Hyeon-Ku;Kim, Hang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Foamed aluminum is an eco-friendly material that is reusable and safe against fire. These superior characteristics have many advantages in the field of building and construction and in cruise ships as sound absorbers. So far, the research on foamed aluminum has been focused on the sound absorption performance using the foaming ratio. Foamed aluminum, when compared with the existing sound absorbers such as glass wool or rock wool, has a better structural performance, and it can be installed on walls in many different ways. This study conducted experiments on the sound absorption characteristics considering the various applications of foamed aluminum. The effects of painting surfaces with the finishing material were compared to that of the normal surface, and the effects of vertical installation and hanging from the ceiling was compared with the effects of installing on the floor.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment (미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과)

  • Oh Chang Bo;Kim Jeong Soo;Hamins Anthony;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

Flood Damage and Recovery of Mulberry and Graftages (뽕밭 밑 묘포의 홍수 피해 조사 보고)

  • 이원주;권영하
    • Journal of Sericultural and Entomological Science
    • /
    • v.32 no.2
    • /
    • pp.118-120
    • /
    • 1990
  • A mulberry field and 3 graftage nurseries in Puyo were flooded for 2 to 5 days in 1987 to investigate flood damage. The effect of fertilization upon fall yield in previously flood fields was also studied. The results were : 1. Graftage which received 2 days of flood were alive with decaying leaves submerged under water. Graftages submerged completely for 5 days died, whereas those whose top appeared above the water lived. Graftages which were knocked down by water and scratched by sand, following washing by a fire engine, died. 2. Mulberry trees flooded for 5 days were alive when tops were above the water. 3. Mud soil carried by the flood and deposited on the mulberry had a pH of 6.43, organic matter 2.4%, and available phosphorus of 124ppm. The original sandy soil of the mulberry field had a pH of 5.52, organic matter 0.3%, and available phosphorus of 467ppm. Mud, as a clayey soil with higth fertility, may play a role in soil building. 4. Mulberry from the flooded field showed 3.4% higher yield with additional fertilization than no fertilization. This suggests nitrogen a mobile element, was lost in the flood.

  • PDF