• Title/Summary/Keyword: Building energy simulation program

Search Result 143, Processing Time 0.033 seconds

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

Road Traffic Noise Simulation for Small-scale Urban Form Alteration Using Spatial Statistical Model (공간통계모형을 이용한 소규모 도시 형태 변경에 따른 소음도 예측)

  • Ryu, Hunjae;Chun, Bum Seok;Park, In Kwon;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.284-290
    • /
    • 2015
  • Road traffic noise is closely related with urban forms and urban components, such as population, building, traffic and land-use, etc. Hence, it is possible to minimize the noise exposure problem depending on how to plan new town or urban planning alteration. This paper provides ways to apply for urban planning in consideration of noise exposure through road traffic noise estimation for alteration of small-scale urban form. Spatial autoregressive model from the former study is used as statistical model for noise simulation. The simulation results by the spatial statistical model are compared with those by the engineering program-based modeling for 5 scenarios of small-scale urban form alteration. The error from the limitation of containing informations inside the grid cell and the difficulties of reflecting acoustic phenomena exists. Nevertheless, in the stage of preliminary design, the use of the statistical models that have been estimated well could be useful in time and economically.

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.

A Development of the Performance Analysis Program Package of the Automatic Temperature Control System for Heating (난방용 자동온도조절기 성능분석용 프로그램 및 패키지 개발)

  • Kim, Yong-Ki;Woo, Nam-Sub;Lee, Tae-Won;Ahn, Byung-Cheon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1209-1214
    • /
    • 2009
  • Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.

  • PDF

Night Purge Control Strategies With Outdoor Air Temperature Conditions for Central Cooling System (중앙냉방시스템의 외기온도조건을 고려한 나이트 퍼지 제어방안에 관한 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6759-6765
    • /
    • 2015
  • In this study, the effects of control strategies of night-purge control system on control characteristics and energy consumption for central cooling system in building are researched by simulation. The start time and set-point temperature for night-purge control with outdoor temperature changes and building cold storage performance are obtained. The system analysis modelling is done by using TRNSYS program package, and the control performances with suggested night-purge control method are compared with the existing control ones. As a result, the suggested night-purge control method shows maximum 16.8% and 28.6% energy saving in comparison with existing control method and conventional one without night-purge control, respectively.

Optimal Control Strategies for Energy Saving of Central Cooling System with Outdoor Air Temperature Changes (외기온도 변화특성을 고려한 중앙냉방시스템의 에너지 절감 최적제어에 관한 연구)

  • Park, Ki-Tae;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4260-4266
    • /
    • 2015
  • In this study, the optimal control method for minimizing of energy consumption for central cooling system with proper occupant comfort level is researched by simulation. The optimal control method is that the optimal set temperatures such as the condenser water temperature, supply air temperature, and chilled water temperature with environment variable change such as outdoor air dry-bulb and wet-bulb temperatures are obtained by suggested optimal control algorithm with maximum and part building load. The TRNSYS program is used for system modeling and the control performances with the suggested optimal control method are compared with the existing control method of fixed set points. The suggested optimal control method shows better responses in energy consumption in comparison with existing control ones.

Evaluation of The Hygrothermal Performance by Wall Layer Component of Wooden Houses Using WUFI Simulation Program (WUFI 시뮬레이션 프로그램을 이용한 목조주택 벽체 레이어 구성에 따른 hygrothermal 성능 평가)

  • Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Thermal performance of wooden houses used by building materials effectively contributing to building energy saving has been improved. However, the performance was decreased to the condensation and mould growth from exterior wall because the moisture control was difficult to high insulation and airtightness. Therefore, the hygrothermal performance of exterior wall, that selected 5 types of wooden houses, evaluated using the hygrothermal simulation program: heat and moisture behavior, condensation and mould growth risk. Wooden houses were selected Rural houses standard plans '10 and '14, $2^{{\prime}{\prime}}{\times}6^{{\prime}{\prime}}$ type, EIFS and wood-based passive house. And the wall A, B, C, D and E were determined by layer component of each wall. The U-value of exterior wall are 0.171, 0.172, 0.221, 0.150, $0.079W/m^2K$. The OSB absolute water content of the wall A and C was exceeds the reference value of 20%, and it was confirmed that condensation occur at insulation material inner surface through the condensation evaluation in the winter. The wall D and E showed excellent results with condensation and water content evaluation compared to others. However, mould growth risk assessment in all five types of wall had have risk. We were determined that hygrothermal performance difference of exterior wall occur the difference in the layer structure rather than in thermal performance.

A Study on Analysis Method for Performance Evaluation of Double-leaf facade of Office Building (업무용 건물의 이중외피 성능평가를 위한 해석기법의 고찰 - 이중외피 설계안의 에너지 저감 성능 및 환기성능을 중심으로 -)

  • Chung, Hwan-Kyo;Chung, Kwang-Seop;Lee, Yong-Jun;Shin, Seung-Chul;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-178
    • /
    • 2012
  • The objective of this study is applied to office buildings to evaluate quantitative evaluation method about performance of double-skin at design stage to establish the basis for the purpose of evaluation performance. Select the evaluation building about design plan for applying the double-skin using the dynamic heat load analysis program the annual heating and cooling load of before and after the double-skin. Using CFD to analyze wind factor and applied ventilation for realistic results. Effects of double-skin to apply, and control techniques that can be done more realistically proposed through to set and control for shade control mode of ventilator and inside cavity wall of double-skin. Apply for the building the double-skin due to interpretation of the annual heating and cooling loads applied to interpret the quantitative effect confirmed the possibility. According to the form of a double skin was confirmed cavity environmental changes.

Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind (베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

Daylight Assessment of Venetian Blind by Shading Heights and Slat Angles (베네시안 블라인드의 높이와 슬랫각도 조절에 따른 계절별 실내주광분포 분석)

  • Shin, Hwa-Young;Kim, Gon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • Aims of this study is to investigate the daylighting control strategy of venetian blind system was performed as a function of ratio of shading height to window and slat angles in the preliminary stage of the parametric study. Floor-to-ceiling window walls of living spaces are used widely in apartment buildings since the Korean government has legally allowed elimination of the balcony area. Enlarging living area by balcony elimination, the larger glass area of window is exposed to the direct sunlight. As a common sunlight controlling device, blind system can be used in all orientations and all latitudes and it may obstruct, absorb, reflect and transmit solar radiation to building by proper adjusting. However, blind system can produce discomfort in occupant and less energy efficiency, if it has not been controlled optimally. The simulation model was based on the unit module of typical living space with balcony elimination. The room dimension was $6.0m(w){\times}6.9m(d){\times}2.7m(h)$ with floor to ceiling height of 2.5m. The blind system was simulated at five slat angles (horizontal, $30^{\circ}$, $45^{\circ}$ upward and downward tilted) and the four ratio of shading height to window (fully closed, partly opened, no-blind) using the Desktop RADIANCE 2.0 program. The series of simulation results indicates that the advantages of available daylight and outside of view can be improved by proper adjusting blind system.