• 제목/요약/키워드: Building energy consumption

검색결과 904건 처리시간 0.024초

Operation Results and Utility of Dynamic Pricing Response Control-Applied VRF System in Summer Season

  • Kim, Min-seok;Lee, Je-hyeon;Song, Young-hak
    • Architectural research
    • /
    • 제19권3호
    • /
    • pp.71-77
    • /
    • 2017
  • Dynamic pricing refers to a system in which a tariff varies, according to a level of charging and applied time depending on time change. The power billing system used in the Korean Electric Power Corporation (KEPCO) is based on time of use (TOU) pricing, which is one of the dynamic pricing systems. This paper aimed to determine the operational results of a variable refrigerant flow system, to which a new control algorithm was applied, in order to respond to dynamic pricing, in summer and the utility of the new control. To do this, real measured data was acquired from a VRF system installed in a building for educational purposes, where dynamic pricing was applied for about 100 days during summer time. At the maximum load operation time period in TOU, the new control minimized operation within the indoor comfort range, an increase in refrigerant evaporation temperature in the indoor unit and the number of revolutions in a compressor in the outdoor unit was limited. As a result, power usage was decreased by 11%, and the operational cost by 14.6%. Furthermore, measurement results using the Predicted Mean Vote (PMV) model, that represented satisfaction of thermal environment, showed that 82.8% to 90.4% of the occupants of the building were satisfied during operation when the new control was applied.

SSPCM 혼입 콘크리트의 역학적 성능 기반 배합설계기법 연구 (Investigation of Mix Design Method in Concrete Mixed with SSPCM Based on Mechanical Behaviors)

  • 민해원;김희선
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2015
  • As energy consumption of building and the reduction of carbon dioxide emissions have been emphasized, phase change materials(PCM) have been introduced as building materials due to its high heat storage performance. Using shape-stabilizing technique, octadecane/xGnP shape-stabilized PCM(SSPCM) can prevent leakage and improve heat storage performance. The objectives of this study are to propose mix design method of concrete mixed with SSPCM and to evaluate mechanical behaviors of the concrete mixed with SSPCM manufactured according to the proposed mix design. Based on the previously reported material test result, the existing mix design of plain concrete(Concrete standard specification, 2009) is modified to consider reduction of strength in concrete due to the addition of SSPCM. To verify the proposed mix design, specimens are fabricated according to the proposed mix design and axial strength tests and three-point loading tests are performed. Test results show that compressive strengths of the tested specimens reach the designed strength even when two different mix ratios of SSPCM are used. From three-point loading tests, flexural stresses decrease as mix ratio of SSPCM increases.

초고층 공동주택 세대내 개보수 주기에 따른 이산화탄소 배출량 연구 (A Study on Quantity of CO2 Emission about Remodeling Cycle at High-rise Apartment housing)

  • 김다유;강승이;제해성
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.75-80
    • /
    • 2010
  • The goal of this study is to figure out the remodeling cycle at high-rise apartment housing and to analysis on quantity of $CO_2$ emission about remodeling cycle. The process of research is as follow; 1) Estimate the remodeling cycle through survey targeting residents at high-rise apartment building. 2) Simulate conditions on the high-rise apartment housing. 3) Calculate quantity of energy consumption and $CO_2$ emission 4) Derive elements that are on high level of environmental load evaluation. The main results of this study is as follow; 1) The cycle of finishing such as wallpaper is shorter than the cycle of building equipment such as elements in a toilet. 2) According to result of calculating $CO_2$ emission, fabric wallpaper and mortar are main factors that impact on the environment. The results is important to show reference points on quantitative measuring evaluation for the environmental-friendly extent.

산업연관표를 이용한 지붕방수공법별 $CO_2$ 배출량 산정 (The Estimation of $CO_2$ Emission Cost on Roof Waterproofing Types Using Input-Output Table)

  • 정영철;박규태;이병윤;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.243-246
    • /
    • 2010
  • Recently, global warming problem is a major issue in international community. The carbon dioxide ($CO_2$) emissions in the construction industry is one of the main factors causing a global warming problem. Accordingly, various researches on $CO_2$ emissions caused by the construction industry is needed and construction methods which is low $CO_2$ emissions should be developed. In this study, $CO_2$emission cost is compared with roof waterproofing types in construction phase. As a result, the $CO_2$ emission costs of asphalt waterproofing is the highest. This research is to provide basic information for selecting appropriate construction methods in aspect of low $CO_2$ emission cost.

  • PDF

케이스먼트 창호 개폐방식에 따른 자연환기 효과에 관한 시뮬레이션 연구 (A Study on the Simulation of Natural Ventilation Effect for Single-sided Casement Window as Opening Types)

  • 최태환;김태연;이승복
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.57-62
    • /
    • 2007
  • At the moment, the reduction of building energy consumption is a unavoidable task of mankind for conserving global environment. Decreasing overall U-value of building envelope and air infiltration, especially in Korean climate condition with clear four seasons, are the obvious solutions for the objective. Thus low glazing ratio with small window openings are required for heating and cooling load reduction in buildings. Using larger window openings could provide better natural ventilation but it also increases the direct solar radiation penetration into indoor space, heat gain in summer and heat loss in winter. On the other hand, the ventilation rates decreasing problem with smaller window openings could be occurred. As a solution for it, the use of casement window can cause increasing natural ventilation rates by wing wall effect. This paper focuses on deduce the most efficient opening type of casement window in Korean climate. To estimate ventilation performance of each opening types, CFD simulation was used. The best performance of opening type in every wind direction is opening both windows to the center and the most appropriate opening type for Korean climate is also opening both windows to center.

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng;Zhang, Hengrui;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.95-110
    • /
    • 2019
  • The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

열풍기 이용 콘크리트 보온양생 성능 개선 방안 분석 (A Study on the Improvement of Thermal Curing Performance of Concrete Using Hot Air Blower)

  • 최지수;김상엽;송진희;조홍범;이규남
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.239-240
    • /
    • 2022
  • In winter, low outdoor temperature can casue reduction of concrete strength. Therefore, thermal protection is required when curing concrete in winter to maintain a certain level or higher surface temperature. Accordingly, in domestic construction sites, a curing method in which surrounds casting areas by tents and operates hot air blowers are widely applied. However, local low-temperature areas may occur due to airtightness of the curing tents. If additional heat is supplied to prevent occurrence of local low-temperature areas, energy consumption increases. Therefore in this study, a plan for improvement method of concrete curing was considered and the performance was evaluated through numerical analysis. A plan to improve the airtightness of the wall opening was applied, but the analysis showed that if only a part of the curing area is shielded, the temperature of the unshielded area decreases,making it inappropriate to improve curing performance.

  • PDF

급배기 방식 개선에 따른 생물안전 밀폐시설의 Risk Assessment와 초기 건설비 저감에 대한 연구 (A Study on the Risk Assessment and Reduction of Initial Construction Cost in a Biosafety Laboratory According to Improvement of Supply and Exhaust Method)

  • 황지현;홍진관;주영덕
    • 설비공학논문집
    • /
    • 제25권10호
    • /
    • pp.534-539
    • /
    • 2013
  • In general, entire supply air of the BSL3 laboratory should be vented to the outside for its biosafety and the air conditioning system should always be operating to maintain a room pressure difference. In this regard, annual energy consumption is approximately five or ten times greater than the magnitude of the office building. In addition, to adjust room pressure difference to the set value efficiently, the supply and exhaust duct system are installed in each room of the BSL3 lab. Thus, initial construction cost is extremely high. In this study, multizone simulation is performed to estimate maintaining the appropriate room pressure difference in the case of changing model A (each room supply and exhaust system) to model B (each zone supply and exhaust system) for verification of the BSL3 lab biosafety. Also, in the case of these two models, the multizone simulation for three kinds of biohazard scenario is performed as part of risk assessment. The analysis of initial construction cost of two models is conducted for comparison. According to the studies, initial construction cost of model B is less than about 22% of existing model A. Moreover, biosafety of the BSL3 lab is still maintaining in the case of the two models.

Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석 (An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System)

  • 김형태;채정민;조영아;박소진;송근수
    • 한국가스학회지
    • /
    • 제22권3호
    • /
    • pp.32-37
    • /
    • 2018
  • 최근 정부의 미래에너지변환 정책에 따라 천연가스를 활용한 분산발전 시장은 점차 확대될 것으로 예상된다. 분산발전은 전력 수요지 주위의 소규모 발전원을 활용하는 발전방식으로 송배전 인프라 구축 비용과 운용비용, 전력손실을 줄일수 있는 장점이 있다. 천연가스를 이용한 분산발전의 대표적인 예로 Trigeneration System이 있다. 본 연구에서는 Trigeneration System에서 발생되는 냉열 및 엔진 배열을 이용하여 공조대상 실내의 습공기를 제습/냉방/난방 하는 제습공조시스템의 성능 분석에 대한 기초 연구를 수행하였다. 연구결과 제습공조시스템 입출구 온도차가 커질수록 시스템 효율은 높아지고 일반공조시스템 대비 에너지 소비량이 감소하는 것을 알 수 있었다.

아파트 단위 세대의 수직 위치 별 에너지 및 물 사용 규모와 패턴에 관한 연구 (A Study on the Energy and Water Consumption and their Patterns as Vertical Locations of Apartment Housing Units)

  • 송동훈;김경태;이승준;신현익
    • 대한건축학회논문집:계획계
    • /
    • 제33권12호
    • /
    • pp.53-63
    • /
    • 2017
  • The purpose of this study is to present an integrated analysis for energy use and its patterns as vertical locations of the dwelling units in apartment buildings which are located in an urban area and constructed by a renowned contractor. In order to enhance the effectiveness of the method, the original data of electricity, water, and gas bills which directly reflect the energy use are sorted and analyzed into several groups as vertical locations in each building. And also, by use of comparing and contrasting the data on a monthly and yearly basis, the accuracy of analyses for seasonal energy use and its patterns is strengthened. Comparative analyses used in this study describe the results that vertical locations of dwelling units do not have much influence on electricity and water usage, but are closely related with gas usage for a heating season. According to the analysis of gas usage, the units on the ground and right above pilotis need enhancement in the insulations for heating to mitigate energy loss. Also, the analysis for the middle floor units in each group describe the fact that the gas usage of the units on the ground is consumes 1.5 times greater than that of the typical floors. Therefore, enhanced insulation strategies need to be considered against the adverse condition that the heat loss increases as the wall facing the outside air increases or as the wind velocity increases through the pilotis.