• Title/Summary/Keyword: Building energy

Search Result 3,795, Processing Time 0.031 seconds

Survey on Building Owner's Awareness of Building Energy Load (건물주의 건축물 에너지 부하량 인식 조사)

  • Yeo, Chang-Jae;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.292-293
    • /
    • 2014
  • Many project (such ESCO or BRP) are being implemented for existing building energy saving. Most of medium or large building that use many energy being implemented this project. In the case of large or medium building must implement obligatorily Energy auditing. Therefore, They can be recognize their building energy consumption situation. But, In the case of small building don't need obligatorily energy auditing. Therefore, They can't be recognize their building energy consumption situation. As a result, Small buildings are difficult to participate in energy efficiency retrofit. In this research, Building owners of buildings energy load recognition and energy efficiency retrofit possible participation was analysis though survey. Survey results, Most building owners don't know building energy load. But they have a good mind to retrofit building energy efficiency. As a result, If they have energy load information, they will be participate energy efficiency retrofit.

  • PDF

Considerations of Sustainable High-rise Building Design in Different Climate Zones of China

  • Wan, Kevin K.W.;Chan, Man-Him;Cheng, Vincent S.Y.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.301-310
    • /
    • 2012
  • Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the context of sustainable development. With more tall buildings constructed in China, the impact on energy consumption and carbon emission would be great from buildings (2% increase of carbon dioxide annually between 1971 and 2004). The imperative was to investigate the building energy performance of high-rise in different climate zones and identify the key design parameters that impose significantly influence on energy performance in sustainable building design. Design implications on glazing performance, sizing of the ventilation fans, renewable energy application on high-rise building design are addressed. Combination of effective sustainable building design strategies (e.g., building envelope improvement, daylight harvesting, advanced lighting design, displacement ventilation, chilled ceiling etc.) could contribute more than 25% of the total building energy consumption compared to the international building energy code.

Study on Evaluation of Energy Efficiency Rating of the Buildings (건축물의 에너지효율등급 평가에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • Since 2010, enhancement of the building energy efficiency and certification system and public office building should have been acquiring the first grade of Building Energy Efficiency. The Building Energy Efficiency Rating evaluation tool and Dynamic Analysis Energy simulation program for Building Energy Efficiency are widely used. The suitability to those programs have been discussed as a variety of programs have been used accordingly. In this study, evaluated the characteristic of Building Energy Efficiency Rating tool(ECO2) of the business building. At a result, the variables on the Weather Data, building Profile and building Load property in hourly between those Building Energy Efficiency evaluation tools have different.

A Study on the Performance Measuring Methods and Standard for the Technical Package in Zero Energy Building (제로에너지빌딩의 기술 패키지 구성을 위한 성능 기준 및 성능 측정 방법에 관한 연구)

  • Sung, Uk-Joo;Rim, Min-Yeop;Kim, Seok-Hyun;Cho, Soo
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.543-556
    • /
    • 2018
  • Zero energy building was attended for energy consumption minimization by the energy saving technology about building heating and cooling energy consumption and the renewable energy production facility. So the government has supported the zero energy building supply for decreasing green gas emissions. The study about inventory of zero energy building has many proceeding. That inventory need the information of material and equipment. So information of material and equipment about zero energy building must be included for the zero energy building realization. Actually the database of zero energy building inventory construction through the inventory established studies has difficult because the database need many information. In this study, author proposed the test methods and performance reference for upload at inventory. It was constructed to material - module - package. Also the author analyzed the construction of the technical package for zero energy building. The author separated performance category to the energy performance for energy analysis and other performance for confirmed the durability, stability and etc. This performance category proposed the table. The test methods of material and equipment in the passive package and active package proposed to the international standard and korea standard basically korea standard. Also the performance reference was proposed to korea legal standard and various standard by this study results. And the authors proposed the table of performance value, test methods, performance reference. By result of this study, the test methods and performance reference will be used the basic data for inventory of zero energy building.

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

A Comparative Study of Building Energy Simulations for Building Types in Multiple Stock Housing based on BIM(Building Information Modeling) (BIM기반의 공동주택 주동 유형별 건물에너지 시뮬레이션 비교에 관한 연구)

  • Lee, Byeongho;Lee, Geonwon;Yeo, Youngho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.87-100
    • /
    • 2010
  • The energy efficient design of the multiple stock housing is very important not only to save energy but also to increase sustainability in a whole city because the multiple stock housing type is dominated in the major residential supply markets in Korea. During the early design phase of the multiple stock housing type, the architect need convenient and accurate tools for evaluating energy consumptions based on building types rapidly. Building Information Modeling(BIM) is introduced as useful tool systems providing interoperability between 3rd dimensional modeling tools and environmental engineering analysis tools, and could reduce time and cost for unnecessary modeling works in the analysis. However, it is still hard to apply to building design practice and integrated energy simulation techniques because interoperability using industrial standard file formats such as IFC and bXML is still underdeveloped. Therefore, the purpose of this study is to perform the building energy simulations, to compare the results on typical building types in multiple stock housing based on BIM, and to clear the problems using industrial standard file formats between 3rd dimensional modeling and building energy simulation software. In addition, through comparisons with simulation results according to the typical building types such as building forms, orientations, and building stories, the interrelation ship and characteristics of BIM based building energy simulation software are analysed and evaluated.

A Study on Control and Monitoring System for Building Energy Management System

  • Oh, Jin-Seok;Bae, Soo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Building energy saving is one of the most important issues in these days. Control algorithm for energy saving should be designed properly to reduce power consumption in building. Recently, building energy system consists of hybrid energy system coupling with RE (Renewable Energy) source. In this paper, an optimum control algorithm for building energy saving is applied to BEMS (Building Energy Management System) by using an outdoor air temperature prediction strategy. BEMS coupling with renewable energy can control HVAC (Heating, Ventilating and Air-Conditioning) system effectively. In order to verify the effectiveness of building energy saving, BEMS was tested for several months at a laboratorial chamber with an air conditioner, fan and heater. To this end BEMS embedded control algorithm has been tested successfully.

A Study on the Design Method of Zero Energy Building considering Energy Demand and Energy Generation by Region (지역별 에너지 소요량과 생산량을 반영한 제로에너지건축물의 설계 방안에 관한 연구)

  • Lee, Soon-Myung;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.8
    • /
    • pp.13-22
    • /
    • 2018
  • The purpose of this study was to consider the energy generation of the building as well as the energy demand of the building in terms of zero energy building design. The reason why the zero energy building viewpoint should be discussed is that direction of the building, heat transfer rate of the building, and the S/V ratio of the building are variables related to energy demand and solar panels installed on the building roof and building envelope are variables related to energy generation. This study proceeded as follows; Firstly, the simulation model of large office and elementary school has the same mutual volume and total floor area, and the each floor area and number of floors are adjusted so that the S/V ratio is different. To the next, the energy demand and energy generation of the simulation model were derived based on the meteorological data of Seoul, Daejeon, Busan. Finally, energy demand, energy generation, and final energy demand were compared with heat transfer rate, S/V ratio, building type, region, and orientation. The results of this study is that consideration of solar power generation in terms of energy generation should be taken into consideration at the same time in consideration of the heat transfer rate, the shape, the region and the direction of the zero energy building design.

A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building (사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구)

  • Park, Chang-Bong;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.