• 제목/요약/키워드: Building comfort

검색결과 330건 처리시간 0.037초

태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구 (The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space)

  • 연성현;이효준;리광훈
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

자연환기가 가능한 서울시 공동주택의 하절기 실내 온열 쾌적성 평가 (Evaluation of the Indoor Thermal Comfort in Naturally Ventilated Apartment During Summer)

  • 이승재;정창헌;황석호;김태연;이승복
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.59-66
    • /
    • 2010
  • Natural ventilation is major strategy of 'sustainable building'. It aims to supply fresh air to the indoor, and to remove heat from the indoor during summer. In the latter point of view, natural ventilation can be grouped into two main strategies, daytime ventilation and night cooing. If we take advantage of these two natural ventilation strategies, indoor thermal comfort can be significantly improved. This study focused on grasping the current situation and problem of indoor thermal comfort of the naturally ventilated residential buildings to seek for direction of later studies. Additionally, thermal comfort of residence where the interior blind and exterior insulation were applied was analyzed. It was analyzed that the percentage of the time which satisfy the indoor acceptable operative temperature during summer was 90 ~ 95% and the heat control performance of natural ventilation has a limitation. When the interior blind and exterior insulation were applied, indoor thermal comfort was significantly improved. However, it still need more improvement.

초고층 건축물의 수평진동 사용성 평가기준 (Human Comfort Criterium for Horizontal Vibration of High-Rise Buildings)

  • 조강표;홍성일;정승환;조수연
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.105-108
    • /
    • 2006
  • should be in This paper presents review on human comfort criteria in major codes and standards for tall buildings. In general, human comfort criteria of tall buildings have been used by magnitude of wind-induced acceleration response. Two different indexes in determination of the magnitude have been used: the peak value which occurs during a period of time and the rms value averaged over this same period. These distinctive acceleration indexes are discussed in detail and each criterium was reviewed and compared. The distinctions arisen because of the different wave forms, or acceleration signatures were addressed. It is described that which index of acceleration should be adopted in establishment of Korean human comfort criteria. In addition, some arguments from a technical standpoint that favor the use of each index are presented.

  • PDF

쾌적 지수 기반의 실내 상황 모니터링 서비스 연구 (A Study of Indoor Context Monitoring Service Based on Comfort Index)

  • 진남;김도현
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.113-118
    • /
    • 2014
  • 최근 실내 환경에서 온도, 습도 등과 같은 현상 데이터를 수집하여 제공하는 실내 상황 정보에 대한 연구가 진행되고 있다. 특히 빌딩에서 불쾌한 상황이 증가하고, 환경 변화에 대한 인식 요구가 증가하고 있다. 본 논문에서는 현상 데이터를 대신하여 실시간 실내 쾌적 상황 정보를 제공하기 위해 GIS 기반의 실내 쾌적 지수 및 상황 산출 엔진을 설계하고 구현한다. 이를 통해 자신의 실내 쾌적 상황을 자가 진단하고, 이를 사용자에게 알려주어 실내 환경을 관리할 수 있다.

외부 차양장치의 적용실태에 관한 통계적 분석 (Statistical Analysis on Application of External Solar Shading Devices)

  • 김효중;이철성;윤종호
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.65-71
    • /
    • 2016
  • Purpose : The solar shading device carries out roles in a reduction of the cooling load and an improvement of the thermal comfort of occupants by adjusting incident solar radiation. In addition, The shading device enhances the visual sensation comfort by controlling the optical properties. In order to improve building performance and comfort of occupancy, interests in application of the shading devices are getting increasing. This study investigated the application and effectiveness of the external shading device design using statistical analysis. The outcome of this paper could be utilized for the realization of status quo and for an estimation of effectiveness of the shading device Method : The period of data gathering was between 2003 and 2014 and total 459 cases of practical building project were investigated. Firstly, this study defined qualification of the shading devices; the shading device should have minimum protruding lengths of 150mm to outside and have the function of shading control. This paper investigated application rate of the shading device in real project, regional rate of application, annual change of application, materials and types. Result : The statistical analysis showed that the application rate of shading devices was 25.7% in total 459 building design projects. The application rate in central and southern region was 25.3% and 27.0% respectively. Meanwhile, Jeju region showed 22.2%, which was the lowest rate although this area needs more shading devices. The application number of the shading device was the smallest in 2007, but the rate gradually increased after that. The applications was the largest in 2014 due to growing interest of the shading devices in the building.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

건축물군의 바람길변화로 인한 풍하중 상호간섭 및 풍환경 (Interference Effects of Change in Wind Passage of a Building Group on Wind Loads and Wind Environments)

  • 조강표;홍성일;김무환;이옥진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.402-409
    • /
    • 2008
  • Wind loads and environments in realistic situations surrounded by neighboring buildings may be considerably different from those in idealized or simplified situations such as codes and standards. Interference effects of change in wind passage of a building group on wind loads and wind environments are reviewed. Wind-induced interference effects depend mainly on the building geometry and arrangement of these structures, their orientation and upstream terrain conditions. The most important factor among them may be the arrangement of building structures which can change the wind direction directly. Interference effects regarding wind loads are discussed with examples of window damages by typhoon and of pressure measurements in the boundary layer wind tunnel. Wind environment problems are also discussed, specially underlined on pedestrian comfort and safety. Various evaluation techniques or standards of wind environment are introduced. The change of wind velocity between the panel-type apartment buildings is examined, depending on the distance each other.

  • PDF

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • 수산해양기술연구
    • /
    • 제50권3호
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

아크릴 반구를 이용한 밀폐조건에 따른 재료별 열 이동특성 분석(II): 건축구조재 종류에 따른 비교 (Analysis of Heat Transfer Characteristics by Material Based on Closed Conditions Using Acrylic Hemispheres (II): Comparison by Type of Building Structural Materials)

  • YANG, Seung Min;KWON, Jun Hyuck;KIM, Phil Lip;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.710-721
    • /
    • 2020
  • 본 연구에서는 시멘트, 벽돌, 목재를 이용한 건축모형을 이용하여 직경 900 mm의 밀폐된 환경 속에서 3일간 온도와 상대습도 측정을 통하여 건축소재의 종류에 따른 실내 온도 환경에 미치는 영향과 열 이동 특성에 대해서 비교분석하였다. 건축모형 내부에 설치된 물은 실내에 있는 사람을 나타냈으며 사람에게 어떤 영향을 미치는지 평가하고자 사용되었다. 목조 건축모형은 시멘트, 벽돌 건축물 보다 보온성이 높아 열 손실이 가장 낮은 것으로 나타났다. 각각의 건축 모형의 열적 쾌적성은 온도와 상대습도를 이용하여 산출하였으며 목조 건축 모형은 시멘트, 벽돌 건축 모형보다 더 쾌적한 환경을 조성하는 결과를 도출하였다.